Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p là số nguyên tố>3 hay p ko chia hết cho 3
hay p=3k+1và p=3k+2
loại bỏ trường hợp p=3k+1 vì p2-1 ko chia hết cho 3
vây p=3k+2
p=3k+2 suy ra p2-1=(3k+2)2-1=9k+4-1=9k+3=3.(3k+1)
<ĐPCM>
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
Vì a nguyên tố lớn hơn 3 => a lẻ => a2 chia 8 dư 1 =>a2-1 chia hết cho 8
Vì thế a2 chia 3 cũng dư 1 => a2-1 chia hết cho 3
mà (3;8) =1 =>a2-1 chia hết cho 24
Câu hỏi của Lương Nhất Chi - Toán lớp 6 | Học trực tuyến bấm vào
ta co : a2-1 = (a+1) . (a-1)
p>3 nen p la so le .suy ra a+1 va a-1 la hai so chan lien tiep nen chia het cho 2.4=8
lai co p>3 nen a+1 hoac a-1 chia het cho 3
ma (3,8)=1 va 3.8=24
suy ra a^2-1 chia het cho 24
a) ( 1-2)+(3-4)+(5-6)+....+(49-50)+51
(-1)+(-1)+..+(-1)+51
-1.25+51
-25+51
Tự tính nhé bạn
b) Vì a;b nguyên tố > 3 => a và b lẻ
=> a2 và b2 chia 8 dư 1 => a2-b2 chia hết cho 8
Vì a;b nguyên tố >3=> a;b không chia hết cho 3
=> a2 và b2 chia 3 dư 1 => a2-b2 chia hết cho 3
mà ( 3;8)=1 nên a2-b2 chia hết cho 24
Vì a;b nguyên tố >3=> a không chia hết cho 3
=> a2 và b2 chia 3 dư 1 =>a2-b2 chia hết cho 3
Vì a;b là số nguyên tố >3 => a;b lẻ
=> a2 và b2 chia 8 dư 1 => a2-b2 chia hết cho 8
Mà (3;8)=1 nên a2-b2 chia hết cho 24
Thật vậy : Mọi số tự nhiên đều có thể viết dưới dạng \(6m\pm1,6m\pm2,6m\pm3\) . Mọi số nguyên tố khác 2 và 3 đều không chia hết cho 2 và 3 => Chúng chỉ có một trong hai dạng 6m+1 hoặc 6m-1
Xét số nguyên tố \(a=6m+1\Rightarrow a^2-1=\left(6m+1\right)^2-1=36m^2+12m=12m\left(3m+1\right)=12m\left(2m+m+1\right)=24m^2+12m\left(m+1\right)\)
Vì m(m+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2 => 12m(m+1) chia hết cho 24 => a2-1 chia hết cho 24
Với trường hợp a = 6m-1 chứng minh tương tự.
Vậy ta có điều phải chứng minh.
thanks