Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{\frac{18}{4+\sqrt{15}}}-\frac{3}{2+\sqrt{3}}-3\sqrt{5}.\)
Thấy có 3 cái biểu thức nên mình tách ra làm từng cái nhé
\(\sqrt{\frac{18}{4+\sqrt{5}}}=\frac{\sqrt{18}}{\sqrt{4+\sqrt{15}}}=\frac{\sqrt{2}.\sqrt{18}}{\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)}\)
\(\Leftrightarrow\frac{6}{\sqrt{8+2\sqrt{15}}}=\frac{6}{\sqrt{3}+\sqrt{5}}\)( Khúc biển đổi ở mẫu là hẳng đẳng thức nha bạn )
\(\frac{6}{\sqrt{5}+\sqrt{3}}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{5-3}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{2}\left(1\right).\)
\(\frac{3}{2+\sqrt{3}}=\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{3\left(2-\sqrt{3}\right)}{1}=\frac{6\left(2-\sqrt{3}\right)}{2}\left(2\right).\)
\(3\sqrt{5}=\frac{6\sqrt{5}}{2}\left(3\right).\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
\(B=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{2}-\frac{6\left(2-\sqrt{3}\right)}{2}-\frac{6\sqrt{5}}{2}=6\left(\frac{\sqrt{5}-\sqrt{3}-2+\sqrt{3}-\sqrt{5}}{2}\right)\)
\(B=6.\left(-1\right)\)
\(B=-6\)
-6 là số hữu tỉ => biểu thức là số hữu tỉ
\(A=\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}=\frac{2\left(\sqrt{5}+3\right)-2\left(\sqrt{5}-3\right)}{-4}=\frac{2\sqrt{5}+6-2\sqrt{5}+6}{-4}=\frac{12}{-4}=-3\)
Vay ........
a/ \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}=\dfrac{2\left(\sqrt{7}+5\right)}{-18}-\dfrac{2\left(\sqrt{7}-5\right)}{-18}=\dfrac{-\sqrt{7}-5+\sqrt{7}-5}{9}=\dfrac{-10}{9}\)
--> biểu thức trên là số hữu tỉ (đpcm)
b/ \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2}{2}+\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}=\dfrac{24}{2}=12\)
--> biểu thức trên là số hữu tỉ (đpcm)
\(A=\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}\)
\(=\frac{2\left(\sqrt{5}+3\right)}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}-\frac{2\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}\)
\(=\frac{2\sqrt{5}+6}{-4}-\frac{2\sqrt{5}-6}{-4}\)
\(=-3\)
Vậy A là số hữu tỉ
Bài 1:
a: \(=\sqrt{7}-2+2=\sqrt{7}\)
b: \(=\left(5\sqrt{5}-3\sqrt{3}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{8+\sqrt{15}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(8+\sqrt{15}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)}{8+\sqrt{15}}\)
=5-3=2
a) \(\dfrac{\sqrt{2}}{\sqrt{3}}+2.\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{\sqrt{2}.\sqrt{2}.\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
b)
\(3\dfrac{\sqrt{2}}{\sqrt{5}}+\dfrac{\sqrt{5}}{\sqrt{2}}-2\sqrt{10}=3\dfrac{\sqrt{2}.\sqrt{5}}{5}+\dfrac{\sqrt{5}.\sqrt{2}}{2}-2\sqrt{10}\)\(=\sqrt{10}.\left[\dfrac{3}{5}+\dfrac{1}{2}-2\right]=\sqrt{10}.\left(-\dfrac{9}{10}\right)=\dfrac{-9\sqrt{10}}{10}\)
c)
\(\dfrac{-\sqrt{3}}{\sqrt{5}}+3.\dfrac{\sqrt{5}}{\sqrt{3}}-4\sqrt{15}=\dfrac{-\sqrt{15}}{5}+3.\dfrac{\sqrt{15}}{3}-4\sqrt{15}=\sqrt{15}.\left(\dfrac{-1}{5}+1-4\right)=\sqrt{15}.\left(-\dfrac{16}{5}\right)=\dfrac{-16\sqrt{15}}{5}\)
d)\(\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{5\sqrt{6}}{6}\)
\(=\dfrac{2\left[\left(\sqrt{6}+2\right)+\left(\sqrt{6}-2\right)\right]}{6-4}+\dfrac{5\sqrt{6}}{6}=\left(2\sqrt{6}\right)+\dfrac{5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)
Kiểm tra lại nhé ^^
a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)
= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)
= \(-2\sqrt{3}\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)
=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)
= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)
= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)
= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
= \(\dfrac{3\sqrt{5}}{2}\)
c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)
= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)
= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)
= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)
d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{1}{2}\)
Nếu đúng cho 1 like nhé!
\(=\sqrt{18\left(4-\sqrt{15}\right)}-3\left(2-\sqrt{3}\right)-3\sqrt{5}\)
\(=\sqrt{9\cdot\left(8-2\sqrt{15}\right)}-6+3\sqrt{3}-3\sqrt{5}\)
\(=3\cdot\left(\sqrt{5}-\sqrt{3}\right)-6+3\sqrt{3}-3\sqrt{5}\)
\(=3\sqrt{5}-3\sqrt{3}-6+3\sqrt{3}-3\sqrt{5}\)
=-6