K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

Vì 2x2 > hoặc = 0 với mọi x

    (x - 1)2  > hoặc = 0 với mọi x

    (x + 3)2 > hoặc = 0 với mọi x

Nên 2x+ (x - 1)2 + (x + 3)2 > hoặc = 0 với mọi x

Vậy đa thức trên vô nghiệm.

2 tháng 4 2019

\(f\left(x\right)=2x^2+10x+21=2x^2+10x+12,5+8,5=2\left(x^2+5x+6,25\right)+8,5\)

\(\Leftrightarrow f\left(x\right)=2\left(x^2+2,5x+2,5x+2,5^2\right)+8,5=2\left[x\left(x+2,5\right)+2,5\left(x+2,5\right)\right]+8,5\)

\(\Leftrightarrow f\left(x\right)=2\left(x+2,5\right)\left(x+2,5\right)+8,5=2\left(x+2,5\right)^2+8,5>0\forall x\)

Vậy \(f\left(x\right)\)vô nghiệm!

21 tháng 4 2016

\(A\left(0\right)=3\cdot0^4+0^3-0^2-0,25\cdot0\)

           \(=3\cdot0+0-0-0,25\cdot0\)

           \(=0+0-0-0\)

           \(=0=0\)

\(\Rightarrow x=0\) là nghiệm của đa thức A(x)

26 tháng 4 2019

Thu gọn đa thức A(x) 

A(x)=2x-2x +x3-7-3x

       =2x2+(-2x-3x)+x3-7

       =2x2-5x+x3-7

Sắp xếp A(x) theo lũy thừa giảm dần của biến là

A(x)= x3+2x2-5x-7

Thu gọn đa thức B(x)=-11+4x3+x2-5x-3x3-x2

                                     =-11+(4x3-3x3)+(x2-x2)-5x

                                     =-11+x3-5x

Sắp xếp B(x) theo lũy thừa giảm dần của biến là

 B(x)= x3-5x-11

b) Ta có A(x)= x3+2x2-5x-7

          =) A(-1)= (-1)3+2.12-5.1-7

                      = -1+2-5-7

                      = -13

Ta có B(x)= x3-5x-11

       =) B(2)=2- 5.2-11

                  = 8-10-11

                  = -13

Giúp bạn phần a,b nha

26 tháng 4 2019

c) P(x) = A(x)+B(x)

\(x^3+2x^2-5x-7\)\(x^3-5x-11\)\(\left(x^3+x^3\right)\)+\(2x^2\)+\(\left(-5x-5x\right)\)+( -7 - 11) 

=\(2x^3\)+\(2x^2\)\(-10x\)-18

vậy P(x)=\(2x^3+2x^2-10x-18\)

Q(x)=A(x)-B(x)

=\(\left(x^3+2x^2-5x-7\right)\)\(\left(x^3-5x-11\right)\)\(x^3+2x^2-5x-7\)-\(x^3+5x+11\)

=\(\left(x^3-x^3\right)\)+\(2x^2\)+\(\left(-5x+5x\right)\)+( -7 + 11)

=\(2x^2\)+4

d) \(2x^2+4\)

Ta thấy: \(2x^2\ge0\forall x\)

=> \(2x^2+4\)> 0 \(\forall x\)

=> \(2x^2+4\ne0\forall x\)

=> \(2x^2+4\)vô nghiệm hayQ(x)=A(x) - B(x) vô nghiệm

Vậy Q(x)=A(x)-B(x) vô nghiệm

26 tháng 5 2016

1. \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

=> Dấu đẳng thức không xảy ra => Phương trình vô nghiệm.

2. \(x^2+x+1=x^2+\frac{2.x.1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

=> Dấu đẳng thức không xảy ra = > Phương trình vô nghiệm.

Cách giải thích khác : Vì \(x^2+x+1\)là bình phương thiếu của một tổng nên vô nghiệm.

Xin chào nhóm của bạn!

22 tháng 4 2018

a) Do x2 ≥ 0
=> x2+3 ≥ 3 > 0
=> Đa thức trên k có no

b) Do -3x4 ≤ 0
=> -3x4-5 ≤ -5 < 0
=> Đa thức trên k có no

c) Do 2x4 ≥ 0
x2 ≥ 0
=> 2x4+x2 ≥ 0
=> 2x4+x2+2 ≥ 2 > 0
=> Đa thức trên k có n0

26 tháng 3 2019

Ta có x=2016 => x-1=2015 

Thay vào ta được :

A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x

 = x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0

26 tháng 3 2019

Thay x=2016 vào biểu thức trên ta được:

 \(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)

     \(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)

      \(=0\)

Vậy x=2016 là nghiệm của đa thức .