Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x4>hoac =0
x2> hoac =0
=> 2x4+x2+3 >0
=> đa thức trên k có nghiệm........
ta có: 2x4 >=0; x2>=0; 3>0
Suy ra: 2x4 + x2 + 3 >0 hay G(x) khác 0
vậy G(x) vô nghiệm
Ta có x4 \(\ge\)0 với mọi x
2x2 \(\ge\)0 với mọi x
\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2
\(\Rightarrow\) M(x) \(\ge\)2
VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm
Lời giải:
Để chứng minh đa thức $M(x)$ không có nghiệm, ta chứng minh \(M(x)\neq 0, \forall x\in\mathbb{R}\). Thật vậy:
\(M(x)=2x^2+2x+3=2(x^2+x)+3=2(x^2+x+\frac{1}{4})+\frac{5}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{5}{2}\geq \frac{5}{2}>0, \forall x\in\mathbb{R}\)
\(\Rightarrow M(x)\neq 0, \forall x\in\mathbb{R}\)
Do đó $M(x)$ không có nghiệm (đpcm)
TA có;
x^2 >= 0 với mọi x
=> 2x^2 >= 0 với mọi x
=> x^2 + 2x^2 >= 0
=> 2 + x^2 + 2x^2 >= 2 > 0
=> Đa thức không có nghiệm
\(2+2x^2+x^2=3x^2+2>0\)
=> Đa thức không có nghiệm vì dấu đẳng thức không xảy ra
:))
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x+1\right)^2+2\ge2>0\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Vậy đa thức f(x) không có nghiệm
do 2x^4 và 2x^2 có số mũ chẵn nên luôn lớn hơn hoặc bằng 0.
Do đó: 2x^4.2X^2+3 luôn lớn hơn hoặc bằng 3 >0
Vậy đa thức trên ko có nghiệm