Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $B$ có 11 số hạng. Mỗi số hạng phía trước $\frac{1}{22}$ đều lớn hơn $\frac{1}{22}$
Do đó $B> 11.\frac{1}{22}=\frac{1}{2}$ (đpcm)
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)
Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)
\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)
Nên \(B>\frac{1}{2}\)
* S = 3/10+3/11+3/12+3/13+3/14 < 3/10 + 3/10+3/10+3/10+3/10
< 3/10 x 5
< 3/2 < 2sư
* S = 3/10+3/11+3/12+3/13+3/14 > 3/15+3/15+3/15+3/15+3/15
> 3/15 x 5
> 1
CHỨNG TỎ ........
> 1
Hình như sai đề :) T sửa lại nhé
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
B có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
\(D=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}< 2\)
Ta có: \(\frac{1}{5}=\frac{1}{5};\frac{1}{6}< \frac{1}{5};...;\frac{1}{10}< \frac{1}{5}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< (\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5})=\frac{6}{5}\)(1)
Lại có: \(\frac{1}{11}=\frac{1}{11};\frac{1}{12}< \frac{1}{11};\frac{1}{13}< \frac{1}{11};...;\frac{1}{17}< \frac{1}{11}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{17}< (\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11})=\frac{7}{11}\)(2)
Từ (1), (2) \(\Rightarrow D< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}< \frac{110}{55}=2\)
P/s: Hoq chắc :<