K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Ta có:

\(9x^2+6x+2\)

\(=\left(3x\right)^2+2.3x+1+1\)

\(=\left(3x+1\right)^2+1\ge1\)

Vì: 1 > 0

Do đó : \(\left(3x+1\right)^2+1>0\) với mọi x

Vậy \(9x^2+6x+2>0\) với mọi x

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0

9 tháng 9 2016

Bài 1:

a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)

=>đpcm

b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)

=>đpcm

Bài 2:

\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)

Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2

\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)

Vậy x=5 thì B đạt GTLN là -3

9 tháng 9 2016

A = 25x2 + 3 - 10x

= (5x)2 - 2 . 5x . 1 + 1 + 2

= (5x - 1)2 + 2

(5x - 1)2 lớn hơn hoặc bằng 0

(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0 

Vậy A > 0 vs mọi x (đpcm)

B = - 9x2 - 2 + 6x 

= - [(3x)2 - 2 . 3x . 1 + 1 + 1]

= - [(3x - 1)2 + 1]

(3x - 1)2 lớn hơn hoặc bằng 0

(3x - 1)2 + 1 lớn hơn hoặc bằng 1 

- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng  - 1 < 0

Vậy B < 0 với mọi x (đpcm)

***

A = 4x2 - 4x + 3

= (2x)2 - 2 . 2x . 1 + 1 + 2

= (2x - 1)2 + 2

(2x - 1)2 lớn hơn hoặc bằng 0

(2x - 1)2 + 2 lớn hơn hoặc bằng 2

Min A = 2 khi x = 1/2

B = -x2 + 10x - 28

= - [x2 - 2 . x . 5 + 25 + 3]

= - [(x - 5)2 + 3]

(x - 5)2 lớn hơn hoặc bằng 0

(x - 5)2 + 3 lớn hơn hoặc bằng 3

- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3

Vậy Max B = 3 khi x = 5

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y

29 tháng 10 2017

câu 2:

9x^2-6x+6>0

ta có (3x)^2-2.3.x+1+5

= (3x-1)^2+5

vì (3x-1)^2 lớn hơn hoặc bằng 0

=> (3x-1)^2+5>0 (đpcm)

29 tháng 10 2017

Câu 1 : Rút gọn biểu thức:

(3x -1)2 + 2 (3x -1) (2x + 1) + (2x + 1)2

= (3x-1+2x+1)^2=25x^2

3 tháng 10 2017

a) theo bài, ta có:

9x2 - 6x + 2 + y2

= (9x2 - 6x + y2) + 2

= (3x - y)2 + 2

vì (3x - y)2 \(\ge0\forall x,y\in R\)

=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R

=> (3x - y)2 + 2 > 0

hay 9x2 - 6x + 2 + y2 > 0

b) làm t.tự

c) theo bài ta có:

A= 2x2 + 4x - 1

= 2(x2 + 2x + 1) - 3

= 2(x + 1)2 - 3

vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)

=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)

=> GTNN của A bằng -3

c) 5x2 - 6xy + y2

= (9x2 - 6xy + y2)- 4x2

= (3x - y)2 - 4x2

= (3x - y - 4x)(3x - y + 4x)

= -(x + y)(7x - y)

mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

11 tháng 8 2015

x^2-6x+10

=x^2-6x+9+1

=x^2-6x+3^2+1

=(x-3)^2+1

ta có: (x-3)^2 >hoặc = 0 với mọi x

=>(x-3)^2+1>hoặc =0+1 >0 với mọi x

chắc chắn đúng luôn nhớ li-ke cho minh nha

11 tháng 8 2015

\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\)  với mọi x 

=> \(x^2-6x+10>0\)  (ĐPCM)