Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi
Để 8n - 9 chia hết cho 2n + 5
=> ( 8n + 20 ) - 29 chia hết cho 2n + 5
=> 4(2n + 5) - 29 chia hết cho 2n + 5
=> 29 chia hết cho 2n + 5
=> 2n + 5 thuộc Ư(29) = { - 29 ; - 1 ; 1 ; 29 }
2n+5 | -29 | -1 | 1 | 29 |
n | -17 | -3 | -2 | 12 |
Vậy n thuộc { - 19 ; -3 ; -2 ; 12 }
Gọi d là ƯCLN(n+3,2n+5)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
=> (2n + 6) - (2n + 5) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(n+3,2n+5) = 1
=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu
Lời giải:
Gọi $d=ƯCLN(2n+5, 8n+24)$
$\Rightarrow 2n+5\vdots d; 8n+24\vdots d$
$\Rightarrow 8n+24-4(2n+5)\vdots d$
$\Rightarrow 4\vdots d$ (1)
Vì $2n+5\vdots d$, mà $2n+5$ lẻ nên $d$ lẻ (2)
Từ $(1); (2)\Rightarrow d=1$
$\Rightarrow 2n+5, 8n+24$ nguyên tố cùng nhau.
$\Rightarrow BCNN(2n+5, 8n+24)=(2n+5)(8n+24)$