K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Gọi $d=ƯCLN(2n+5, 8n+24)$

$\Rightarrow 2n+5\vdots d; 8n+24\vdots d$

$\Rightarrow 8n+24-4(2n+5)\vdots d$

$\Rightarrow 4\vdots d$ (1)

Vì $2n+5\vdots d$, mà $2n+5$ lẻ nên $d$ lẻ (2)

Từ $(1); (2)\Rightarrow d=1$

$\Rightarrow 2n+5, 8n+24$ nguyên tố cùng nhau.

$\Rightarrow BCNN(2n+5, 8n+24)=(2n+5)(8n+24)$

1 tháng 2 2019

a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5

2n - 16 luôn luôn chia hết cho 2n - 16 

=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16

=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }

Tự làm nốt

b, tương tự 

c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8

... Tiếp tục :))

1 tháng 2 2019

a ,\(8n-59⋮2n-16\)

Mà \(2n-16⋮2n-16\) 

\(\Rightarrow4\left(2n-16\right)⋮2n-16\)

\(\Rightarrow8n-64⋮2n-16\) 

\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\) 

\(\Rightarrow8n-59-8n+64⋮2n-16\) 

\(\Rightarrow5⋮2n-16\) 

\(\Rightarrow2n-16\inƯ\left(5\right)\) 

\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\) 

\(\Rightarrow2n\in\left\{17;15;21;11\right\}\) 

\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n 

\(\Rightarrow x\in\varnothing\)

27 tháng 10 2016

a/ước chung là 3

b/ước chung là 1

mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi 

4 tháng 8 2016

Để 8n - 9 chia hết cho 2n + 5

=> ( 8n + 20 ) - 29 chia hết cho 2n + 5

=> 4(2n + 5) - 29 chia hết cho 2n + 5

=> 29 chia hết cho 2n + 5

=> 2n + 5 thuộc Ư(29) = { - 29 ; - 1 ; 1 ; 29 }

2n+5-29-1129
n-17-3-212

Vậy n thuộc {  - 19 ; -3 ; -2 ; 12 }

14 tháng 11 2016

Gọi d là ƯCLN(n+3,2n+5)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n + 6) - (2n + 5) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

=> ƯCLN(n+3,2n+5) = 1

=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau

14 tháng 11 2016

giúp mình với mình đg gấp lắm

 

 

14 tháng 11 2016

Gọi d là ƯC(n+3;2n+5)

=> 2(n+3) - (2n+5) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ........

NV
5 tháng 1 2024

- Với \(n=0\) không thỏa mãn

- Với \(n=1\) không thỏa mãn

- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)

- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5

Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP 

Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu