K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99}+2^{100}\right)=\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{99}\left(1+2\right)=\)

\(=3\left(2+2^3+2^5+...+2^{99}\right)⋮3\)

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

8 tháng 12 2018

Bạn có:
A = (1 + 2) + (22 + 23) + ... + (238 + 239) = (1 + 2) + 22(1 + 2) + ... + 238(1 + 2) = (1 + 2)(1 + 22 + 24 + ... + 238) = 3(1 + 22 + 24 + ... + 238)
Mà A = 3(1 + 22 + 24 + ... + 238) chia hết cho 3, đồng thời do (1 + 22 + 24 + ... + 238) > 1 nên A > 3
=> A là hợp số

15 tháng 12 2018

tại sao A=3(1+2+........

z lại đâu hỏi chia hết cho 3 đâu

20 tháng 12 2015

2 + 22 + 23 + 24 + 25 + 26 + 27 + 2+ 29

= (2 + 22 + 23) + (24 +25 + 26) +(27 + 28 + 29)

= (2 + 2+ 23) + 23(2 + 22 + 23) + 26(2 + 22 + 23)

= 14 + 23.14 + 26.14

= 14(1 + 23 + 26) chia hết cho 7 (ĐPCM)

12 tháng 12 2023

co cai nit tu di ma tinh

 

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

26 tháng 10 2018

S=(18+3).6:2=63 là bội của 9              (  số số hạng =(18-3):3+1=6)

A=(100+2).50:2=2550 Chia hết cho 2, 5, 3 Vậy A thuộc B(2), B(5), B(3)

1 tháng 3 2020

\(S=2+2^2+2^3+...+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)

\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)

\(S=3\left(2+2^3+....+2^{99}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau

S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)

S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)

S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)

các số hạng của S chia hết cho 3 => S chia hết cho 3

Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15

Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15

=> S chia hết cho 15

10 tháng 8 2016

Ta có : 

A=2 + 2+ 2+ ...... + 299 + 2100

=> A = (2 + 22) + (2+ 24) + ...... + (299 + 2100)

=> A = 2.(1 + 2) + 23.(1 + 2) + .... + 299.(1 + 2)

=> A = 2.3 + 23.3 + .... + 299.3

=> A = 3.(2 + 23 + .... + 299) chia hết cho 3(đpcm)

10 tháng 8 2016

A=2+22+23+24+...+299+2100

=(2+22)+(23+24)+...+(299+2100)

=2.(1+2)+23.(1+2)+...+299.(1+2)

=2.3+23.3+...+299.3

=3.(2+23+...+299) chia hết cho 3

Chúc bạn học giỏi nha!!!!

K cho mik vs nhé toikomuonan