Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2
=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6
nhe
Lời giải:
Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
Nếu $a=6k+1$:
$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$
Nếu $a=6k+5$:
$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$
Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.
Ta có: a không chia hết cho 3
TH1: a=3m+1 (m thuộc N)
=>a2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>a2 chia 3 dư 1
TH2: a=3n+2 (n thuộc N)
=>a2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>a2 chia 3 dư 1
Vậy a2 luôn chia 3 dư 1
=>a2-1 chia hết cho 3 (1)
Ta có: a lẻ
=>a2 lẻ
=>a2-1 chẵn
=>a2-1 chia hết cho 2 (2)
Từ (1) và (2) và (3;2)=1
=>a2-1 chia hết cho 3.2=6 (đpcm)
A = n2 - 1
- Vì n lẻ nên n2 lẻ => n2 - 1 chẵn => A chia hết cho 2
- Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2
+ Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)2 = (3k + 1).(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k2 + 2k) chia hết cho 3 => A chia hết cho 3
+ Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2).(3k + 2) = 9k2 + 12k + 4 = 3.(3k2 + 4k + 1) + 1
=> n2 - 1 = 3.(3k2 + 4k + 1) => A chia hết cho 3
Vậy A chia hết cho 2 và 3 nên A chia hết cho 6
giải
A = n2 - 1
Vì n lẻ nên n2 lẻ => n2 - 1 chẵn => A chia hết cho 2
Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2
Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)2 = (3k + 1).(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k2 + 2k) chia hết cho 3 => A chia hết cho 3
Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2).(3k + 2) = 9k2 + 12k + 4 = 3.(3k2 + 4k + 1) + 1
=> n2 - 1 = 3.(3k2 + 4k + 1) => A chia hết cho 3
Vậy A chia hết cho 2 và 3 nên A chia hết cho 6
hok tốt
Câu a) có 2 trường hợp nha bn
TH1
n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2
TH2
n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2
Vậy (n+10)(n+17) chia hết cho 2
Câu b)
Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp
Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6
Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6
Vậy \(a+b+c\)chia hết cho 6
a.Ta có: n+6 và n+7 là hai số tự nhiên liên tiếp
=> n+6 hoặc n+7 chia hết cho2
=>A chia hết cho 2
b.Ta có : B=n2+n+3
=>B= n(n+1)+3
tương tự với A ta có n(n+1) chia hết cho2
=>B=n(n+1)+2+1
Mà n(n+1) và 2 chia hết cho 2 =>B lẻ
=>B không chia hết cho 2
a) Có: n + 6; n + 7 là hai số tự nhiên liên tiếp mà tích của hai số tự nhiên liên tiếp chia hết cho 2
=> ( n + 6 ) ( n + 7 ) chia hết cho 2
b) Có: \(n^2+n+3=n\left(n+1\right)+3\)
vì n , n + 1 là hai số tự nhiên liên tiếp
=> n ( n + 1 ) chia hết cho 2
mà 3 không chia hết cho 2
=> n ( n+1) + 3 không chia hết cho 2
=> n^2 + n + 3 không chia hết cho 2.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
\(a^2-1=a.a-1\)
Vì \(a.a\) là tích của hai số lẻ (theo giả thiết) giống nhau nên có chữu số tận cùng là số lẻ.
Do đó \(a.a-1\) có chữ số tận cùng là số chẵn.
\(\Rightarrow\) \(a.a-1⋮2\left(1\right)\)
Giả sử : \(a=3k+1\) ( a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+1\right)\left(3k+1\right)-1\)
\(=9k^2+3k+3k+1-1=9k^2+3k+3k⋮3\)
\(\Rightarrow a.a-1⋮3\)
Giả sử : \(a=3k+2\) (a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+2\right)\left(3k+2\right)-1\)
\(=9k^2+6k+6k+4-1=9k^2+6k+6k+3⋮3\)
\(\Rightarrow a.a-1⋮3\) (2)
Từ (1) và (2), ta thấy:
\(a.a-1⋮2\) và \(a.a-1:3\)
\(\Rightarrow a.a-1⋮6\Rightarrow a^2-1⋮6\left(đpcm\right)\)
~ Học tốt ~
Nguyễn Thanh Hữu
+)Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 ( 1 )
+) Do a không chia hết cho 3 => a = 3k hoặc a = 3k + 2 ( k thuộc N )
Nếu a = 3k + 1 thì a2 = ( 3k + 1 ) \(\times\) ( 3k + 1 )
= ( 3k + 1 ) \(\times\) 3k \(\times\) ( 3k + 1 )
= 9k2 + 3k + 3k + 1 chia 3 dư 1 .
Nếu a = 3k + 2 thì a2 =( 3k + 2 ) \(\times\) ( 3k + 2 )
= ( 3k + 2 ) \(\times\) 3k + 2 \(\times\) ( 3k + 2 )
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 ( 2 )
Từ (1) và (2) , do (2 ; 3 ) =1 => a2 - 1 chia hết cho 6 .