K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Lấy n = 1 thì điều trên không đúng 

Em xem lại đề

19 tháng 7 2016

Ta có: n\(^3\)+11n

= n\(^3\) ‐n+12n

= n﴾n\(^2\) ‐1﴿+12n

=﴾n‐1﴿﴾n+1﴿n+12n

Vì n‐1, n, n+1 là tích 3 số nguyên liên tiếp nên n﴾n‐1﴿﴾n+1﴿ chia hết cho 6. Mà 12n chia hết cho 6 =>n 3+11n chia hết cho 6

19 tháng 7 2016

n3+11 chia hết cho 6 => (n3-n)+12n chia hết cho 6 

+) 12n chia hết cho 6 

n3-n = n.(n2-1) chia hết cho 6 

. Nếu n lẻ => n2-1 chia hết cho 2 =>n.(n2-1) chia hết cho 2

. Nếu n chẵn =>n.(n2-1) chia hết cho 2 

. Nếu n chia hết cho 3 => n.(n2-1) chia hết cho 3 

. Nếu n không chia hết cho 3 => n2 chia 3 dư 1 =>n2-1 chia hết cho 3 => n.(n2-1) chia hết cho 3

Mà (2;3)=1 nên n.(n2-1) chia hết cho 6

=> n3+11 chia hết cho 6 

10 tháng 5 2017

Mk thấy hơi vô lí.

Vì nếu n=1.

=>A=1^3*11*1=11 ko chia hết cho 6.

10 tháng 5 2017

Sủa lại đề : Chứng minh \(A=n^3+11n⋮6\) với n là số nguyên

Ta có : \(A=n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=n\left(n-1\right)\left(n+1\right)+12n\)

Vì \(\left(n-1\right)n\left(n+1\right)\)là tích 3 số nguyên liên tiếp => \(\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Mà \(\left(2;3\right)=1\) \(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\)

\(12n=2.6.n⋮6\)  \(\Rightarrow\left(n-1\right)n\left(n+1\right)+12n⋮6\)

\(\Rightarrow A⋮6\) (đpcm)

ta có n^3+11n

= n^3-n+12n 

= n(n^2-1)+12n

= n(n-1)(n+1)+12n

Do n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 nên 

n^3+11n chia hết cho 6 với n là số nguyên

CHƯA HIỂU CHỖ NÀO HỎI MK NHA BẠN 

15 tháng 11 2015

A=3n+3+3n+1+2n+3+2n+2

=>A=3n.33+3n.31+2n.23+2n.22

=>A=3n.(33+31) +2n.(23+22)

=>A=3n.30+2n.12

=>A=3n.5.6+2n.2.6

=>A=6.(3n.5+2n.2)

Vì 6.(3n.5+2n.2) chia hết cho 6

=>A chia hết cho 6 (đpcm)

Nhớ tick cho mình nha bạn mình đang cần điểm lắm

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534