Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d
Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)d \(\Rightarrow\)2 \(⋮\)d \(\Rightarrow\)d \(\in\){ 1 ; 2 }
d là ước của số lẻ 2n + 1 nên d \(\ne\)2
Vậy d = 1
Do đó ( 2n + 1 ; 6n + 5 ) = 1
Gọi ƯCLN (2n+1,6n+1)=d.
Suy ra 2n+1 chia hết cho d và 6n+1 chia hết cho d.
Suy ra 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d.
Suy ra (6n+3)-(6n+1) chia hết cho d.
Suy ra 2 chia hết cho d hay d=1 hoặc 2.
Mà 2n+1 không chia hết cho 2 vì 2n+1 là số lẻ. Suy ra d=1.
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
gọi (2n+3,6n+8)=d
=>d là ước của 3(2n+3)=6n+9
Mà d cũng là ước của 6n+8
=>d là ước của (6n+9)-(6n+8)=1
=>d=1
=> (2n+3,6n+8)==1 (đpcm)
Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d
6n+5 chia hết d
= 3.(2n+1) chia hết d
6n+5 chia hết d
=6n+3 chia hết d
6n+5 chia hết d
(6n+5)-(6n+3) chia hết d
=2 chia hết d
d=1;2
Mà 6n+5 không chia hết 2; suy ra d=1
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
kick hộ mình nhé