Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (2m;2m+1)=d
(2m+1) -2m ⋮ d → 1 ⋮ d → d=1
ƯCLN(2m,2m+1) =1
Vậy 2m và 2m+1 là số nguyên tố cùng nhau
GỌi d là ƯC(2m+1,2m)
=>2m chia hết cho d
=>2m+1 chia hết cho d
=> (2m+1)-(2m) chia hết cho d
=>1 chia hết cho d
=> d =1
vậy 2m và 2m+1 là 2 số nguyên tố cùng nhau
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d là ƯCLN(7n+3;2n+1) (d thuộc N*)
Ta có: 7n+3 chia hết cho d => 14n+6 chia hết cho d (1)
2n+1 chia hết cho d => 14n+7 chia hết cho d (2)
TỪ (1) và (2) => 14n+7-14n-6 chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)={1}
=> d=1
Vì d=1 => ƯCLN(7n+3;2n+1)=1
Vậy 7n+3 và 2n+1 là 2 số nguyên tố cùng nhau ĐPCM
gọi ucln của n+1 va n+3 là d
nên n+1 chia hết cho d
n+3 chia hết cho d
(n+3)-(n+1) chia hết cho d
2 chia hết cho d =>d=1,2
mà n+1 ko chia hết cho 2 =>d =1
vậy 2 số đó là 2 số nguyên tố cùng nhau
đề sai nhé n là số lẻ thì 2 số không nguyên tố cùng nhau