K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

bạn lấy \(2^{200}\)trừ cho số cuối rồi đóng ngoặc lại sau đó cộng với một bạn chỉ lấy vài số để trừ thồi nha

chúc bạn học tốt

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

30 tháng 10 2015

a) A=5(1+5)+53(1+5)+...+5199(1+5)

  =(1+5)(5+53+....+5199) chia hết cho 6

b) A:31 dư 30 hay A-30 chia hết cho 31

Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)

           31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư

 

13 tháng 11 2018

\(C=2+2^2+2^3+......+2^{100}⋮31\)

\(C=2.\left(1+2+2^2+2^3+2^4\right)+2^{95}.\left(1+2+2^2+2^3+2^4\right)\)

\(C=2.31+.......+2^{95}+31\)

\(C=31.\left(2+2^{95}\right)⋮31\)

\(\Rightarrow C⋮31\)

9 tháng 10 2019

c=2^101-2 chia hết cho 31

21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi

NM
14 tháng 10 2021

ta có: 

undefined

14 tháng 10 2021

\(c,\text{Đ}\text{ặt}:A=5+5^2+5^3+...+5^{96}\)

\(A=\left(5+5^2+5^3\right)+....+\left(5^{94}+5^{95}+5^{96}\right)\)

\(A=5\left(1+5+5^2\right)+...+5^{94}\left(1+5+5^2\right)\)

\(A=5.126+...+5^{94}.126\)

\(A=126\left(5+5^4+...+5^{94}\right)\)

\(M\text{à}:A=126\left(5+5^4+...+5^{94}\right)⋮126\)

\(\Rightarrow5+5^2+5^3+...+5^{96}⋮126\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

24 tháng 10 2019

a) Ta có:  T= (2+22+23+24)+(25+26+27+28)+.....+(257+258+259+260)

                  = 30.1     +       25. (2+22+23+24) +.....+ 257. (2+22+23+24)

                  = 30.1     +       2 . 30      +......+ 257 . 30

                  =30 . ( 25+...+257)

Vì 30 chia hết cho 30

=> T chia hết cho 30

 mà 30 chia hết cho 5

=> T chia hết cho 5

các bài còn lại câu a tương tự bạn tự làm nhé

Phương pháp: nhóm các số hạng để đc 1 số chia hết cho số đó

b) Ta có: S = 165+215

                      = 220 + 215

                      =215 . ( 2+ 1)

                  =215 . 33

Vì 33 chia hết cho 33

=> S chia hết cho 33

CHÚC BẠN HOK TỐT!!!!!!