Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)
Các câu sau tương tự
a)
\(a^4+3>4a\)
<=> \(a^4-4a+3>0\)
<=> \(a^4-a^3+a^3-a^2+a^2-a-3a+3>0\)
<=> \(a^3\left(a-1\right)+a^2\left(a-1\right)+a\left(a-1\right)-3\left(a-1\right)\)
<=> \(\left(a-1\right)\left(a^3+a^2+a-3\right)>0\)
GT <=> 2(a^2+b^2+c^2+d^2+e^2)-2(ab+ac+ad+ae)>=0
<=> a^2-2a(d+e)+(d+e)^2 - 2de+d^2+e^2+a^2-2a(b+c)+(b+c)^2-2bc+b^2+c^2>=0
<=> (a-d-e)^2 +(d-e)^2+(a-b-c)^2 + (b-c)^2>=0 (đúng)
=> bdt9 đúng
Đặt \(A=a^2+b^2+c^2+d^2+e^2\)
\(\Leftrightarrow4A=\left(a^2+4b^2\right)+\left(a^2+4c^2\right)+\left(a^2+4d^2\right)+\left(a^2+4e^2\right)\)
\(\Rightarrow4A\ge4ab+4ac+4ad+4ae\)
\(\Rightarrow A\ge a\left(b+c+d+e\right)\)
Vậy.......
Áp dụng x2+y2>=2xy Ta có:
a2/4+b2>=ab
a2/4+c2>=ac
a2/4+d2>=ad
a2/4+e2>=ae
=> a2+b2+c2+d2+e2>=a(b+c+d+e)
đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi
Ta có: b2 = ac => \(\frac{a}{b}=\frac{b}{c}\); c2 = bd => \(\frac{b}{c}=\frac{c}{d}\); d2 = ce => \(\frac{c}{d}=\frac{d}{e}\); e2 = df => \(\frac{d}{e}=\frac{e}{f}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{f}\)\(\Rightarrow\frac{a^5}{b^5}=\frac{b^5}{c^5}=\frac{c^5}{d^5}=\frac{d^5}{e^5}=\frac{e^5}{f^5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^5}{b^5}=\frac{b^5}{c^5}=\frac{c^5}{d^5}=\frac{d^5}{e^5}=\frac{e^5}{f^5}=\frac{a^5+b^5+c^5+d^5+e^5}{b^5+c^5+d^5+e^5+f^5}\)(1)
Lại có: \(\frac{a^5}{b^5}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}.\frac{e}{f}=\frac{a}{f}\)(2)
Từ (1), (2) \(\Rightarrow\frac{a^5+b^5+c^5+d^5+e^5}{b^5+c^5+d^5+e^5+f^5}=\frac{a}{f}\)(đpcm)
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
a2+b2+c2+d2+e2 ≥ a(b+c+d+e)
⇔a2+b2+c2+d2+e2−ab−ac−ad−ae ≥ 0
⇔4a2+4b2+4c2+4d2+4e2−4ab−4ac−4ad−4ae ≥ 0
⇔(a2−4ab+4b2)+(a2−4ac+4c2).....≥0
⇔(a−2b)2+(a−2c)2...≥0
uk..có bạn giải r kìa