Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\sqrt{2018}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{2018}\) có thể viết được dưới dạng \(\sqrt{2018}=\frac{m}{n}\left(m;n\in Z;\left(m;n\right)=1;n\ne1\right)\)
\(\Leftrightarrow2018=\frac{m^2}{n^2}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\) Mà \(\left(m;n\right)=1\Rightarrow n=1\) Trái với giả thiết
\(\Rightarrow\) Điều giả sử sai \(\Rightarrow\sqrt{2018}\) là số vô tỉ
Giả sử \(\sqrt{2018}\)không phải là số vô tỷ, khi đó :
\(\sqrt{2018}\)là số hữu tỷ.
\(\Rightarrow\sqrt{2018}=\frac{m}{n}\left(m,n\inℕ^∗\right);\left(m.n\right)=1\)
\(\Rightarrow2018=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)
\(\Rightarrow2018.n^2=m^2\)
\(\Rightarrow m^2⋮2018\)
\(\Rightarrow m^2⋮2\left(2018⋮2\right)\)
\(\Rightarrow m⋮2\)( Vì 2 là số nguyên tố )
\(\Rightarrow m=2k\left(k\inℕ\right)\)
Do đó : \(2018.n^2=\left(2k\right)^2\)
\(\Rightarrow2018.n^2=4k^2\)
\(\Rightarrow1009.n^2=2k^2\)
\(\Rightarrow1009.n^2⋮2\)
\(\Rightarrow n^2⋮2\)( vì \(\left(1009,2\right)=1\))
\(\Rightarrow n⋮2\)( Vì 2 là số nguyên tố )
Như vậy : \(m⋮2;n⋮2\)trái với \(\left(m,n\right)=1\)
Chứng tỏ điều giả sử ko xảy ra.
Vậy \(\sqrt{2018}\)là số vô tỷ
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
Ta có: \(\sqrt{5}\) là 1 số vô tỉ
=> \(2+\sqrt{5}\) là 1 số vô tỉ
=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ
=> đpcm
Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)
\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)
\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))
Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Vì 2 không phải là số chính phương nên căn bậc hai của 2 là số vô tỉ
giả sử \(\sqrt{2}\) là 1 số hữu tỉ
=> \(\sqrt{2}\) có thể viết dưới dạng \(\frac{m}{n}\) (ƯCLN(m;n) = 1)
=> \(\left(\frac{m}{n}\right)^2=2\)
=> \(m^2=2n^2\)
=> \(m^2⋮2\)
=> \(m⋮2\)
đặt m = 2k
=> (2k)2 = 2n2
=> 2k2 = n2
=> n2 \(⋮\) 2
vậy m;n \(⋮\) 2 => chúng k phải 2 số nguyên tố cùng nhau
=> điều giả sử sai
vậy_
tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,