Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=tan^4x+cos^4x-2\left(tan^2x+cot^2x\right)+8\)
\(=\left(tan^2x+cot^2x\right)^2-2\left(tan^2x+cot^2x\right)+6\)
\(=\left(tan^2x+cot^2x-1\right)^2+5\)
Mặt khác áp dụng BĐT \(a^2+b^2\ge2ab\Rightarrow tan^2x+cot^2x\ge2\)
\(\Rightarrow\left(tan^2x+cot^2x-1\right)^2+5\ge\left(2-1\right)^2+5=6>5\Rightarrow VT>5\) (1)
Lại có \(3sinx-4cosx=5\left(sinx.\frac{3}{5}-cosx.\frac{4}{5}\right)\)
Do \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}\frac{3}{5}=cosa\\\frac{4}{5}=sina\end{matrix}\right.\)
\(\Rightarrow VP=3sinx-4cosx=5\left(sinx.cosa-cosx.sina\right)=5sin\left(x-a\right)\)
Do \(sin\left(x-a\right)\le1\Rightarrow5sin\left(x-a\right)\le5\Rightarrow VP\le5\) (2)
(1), (2) \(\Rightarrow VT>VP\)
\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)
\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)
\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)
\(2\left[\left(sinx+cosx+1\right)\left(sinx+cosx-1\right)\right]^2\)
\(=2\left[\left(sinx+cosx\right)^2-1\right]^2=2\left(sin^2x+cos^2x+2sinx.cosx-1\right)^2\)
\(=2\left(2sinx.cosx\right)^2=2sin^22x=1-cos4x\)
b/ \(\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a+1\right)}{2\left(cos^22a+2cos2a+1\right)}=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}\)
\(\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{4sin^4a}{4cos^4a}=tan^4a\)
c/ \(cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^2x\)
\(=1-sin4x+sin4x+sin2x-sin2x-sin^2x\)
\(=1-sin^2x=cos^2x\)
Đúng như bạn viết vế trái là thế này:
\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)
\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)
Còn vế phải sẽ ra thế này:
\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)
Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
Giả sử các biểu thức đều xác định:
a/ \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
\(=sin^2x.\frac{sinx}{cosx}+sinx.cosx+cos^2x.\frac{cosx}{sinx}+sinx.cosx\)
\(=sinx\left(\frac{sin^2x}{cosx}+cosx\right)+cosx\left(\frac{cos^2x}{sinx}+sinx\right)\)
\(=sinx\left(\frac{sin^2x+cos^2x}{cosx}\right)+cosx\left(\frac{cos^2x+sin^2x}{sinx}\right)=\frac{sinx}{cosx}+\frac{cosx}{sinx}=tanx+cotx\)
b/
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+tan^2x=1+tan^2x+tan^2x=1+2tan^2x\)
c/ \(\frac{cosx}{1+sinx}+tanx=\frac{cosx\left(1-sinx\right)}{1-sin^2x}+\frac{sinx.cosx}{cos^2x}=\frac{cosx-cosx.sinx}{cos^2x}+\frac{sinx.cosx}{cos^2x}\)
\(=\frac{cosx}{cos^2x}=\frac{1}{cosx}\)
d/ \(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}+\frac{sinx\left(1+cosx\right)}{sin^2x}\)
\(=\frac{sinx-sinx.cosx}{1-cos^2x}+\frac{sinx+sinx.cosx}{sin^2x}=\frac{sinx-sinx.cosx}{sin^2x}+\frac{sinx+sinx.cosx}{sin^2x}\)
\(=\frac{2sinx}{sin^2x}=\frac{2}{sinx}\)