Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P = ...
* Chứng minh P > 1/2 :
\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)
Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là:
\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)
\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)
Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)
\(\Rightarrow\)\(P>\frac{1}{2}\)
* Chứng minh P < 3/4 :
Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)
\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)
\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)
...
\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)
\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 )
\(\Rightarrow\)\(P< \frac{3}{4}\)
=> n chia 3 dư a (0<a <3)
=> n = 3b +a
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3
=> a^2 chia hết cho3 mà 0<a <3
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: c:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
=>n^2 = 4k^2
=>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
Sử dụng bất đẳng thức AM-GM ta có:
\(\hept{\begin{cases}a^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{a^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}a\\b^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{b^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}b\\c^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{c^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}c\end{cases}}\)
_________________________________________________________________________________________
\(\Rightarrow\left(a^n+b^n+c^n\right)\ge n\left(\frac{a+b+c}{3}\right)^{n-1}\left(a+b+c\right)-3\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\)\(=3\left(\frac{a+b+c}{3}\right)^n\)
N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)
=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)
=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3
Giả sử \(\sqrt{3}\) là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
\(\dfrac{m}{n}=\sqrt{3}\left(1\right)\)
với \(\dfrac{m}{n}\) là phân số tối giản hay m và n có ước chung lớn nhất bằng 1
Khi đó từ \(\left(1\right)\Leftrightarrow m=n\sqrt{3}\Leftrightarrow m^2=3n^2\left(2\right)\)
Từ đó suy ra \(m^2\) chia hết cho 3 nên m phải chia hết cho 3\(\left(3\right)\)
Do đó tồn tại số nguyên k sao cho \(m=3k\) Thay vào \(\left(2\right)\) ta có thể suy ra \(n^2=3k^2\) hay \(n=\sqrt{3}k\)
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để \(\dfrac{m}{n}=\sqrt{3}\) Vậy \(\sqrt{3}\) không là số hữu tỉ \(\left(\sqrt{3}\notin Q\right)\)
cảm ơn ạ