Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này thì....mình mù tịt
Vì chưa học!!!!
Ai đồng ý thì cho mình xin 1 k!!!
Lời giải:
Với $a\neq b; a,b\geq 0$ ta luôn có: \(a+b>2\sqrt{ab}\Leftrightarrow 2(a+b)> (\sqrt{a}+\sqrt{b})^2\)
\(\Rightarrow \sqrt{2(a+b)}> \sqrt{a}+\sqrt{b}\).
Áp dụng BĐT trên:
\(\sqrt{2}+\sqrt{6}< \sqrt{2(2+6)}=4\)
\(\sqrt{12}+\sqrt{20}< \sqrt{2(12+20)}=8\)
\(\sqrt{30}+\sqrt{42}< \sqrt{2(30+42)}=12\)
Cộng theo vế:
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< 8+4+12=24\) (đpcm)
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\sqrt{6}-\left(\dfrac{5\sqrt{3}}{6}+12\right)\)
\(=6\sqrt{2}-18\sqrt{2}+12-\left(\dfrac{5\sqrt{3}+72}{6}\right)\)
\(=-12\sqrt{2}+12-\dfrac{5\sqrt{3}+72}{6}\)
\(=\dfrac{-72\sqrt{2}+72-5\sqrt{3}-72}{6}=\dfrac{5\sqrt{3}+72\sqrt{2}}{6}\simeq-18,4139\)
Ta có: \(-14,5\sqrt{2}\simeq-20,506\)
\(VT\ne VP\)
Đẳng thức không xảy ra
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{42}<\sqrt{4}+\sqrt{9}+\sqrt{16}+\sqrt{36}+\sqrt{49}=2+3+4+6+7=22<24\)
Bài mở đầu cho ngày mới