Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho 55 (đpcm )
b)
\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\) chia hết cho 33 (đpcm )
c)
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405\) chia hết cho 405 (đpcm )
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=\left(3^{26}.3^2\right)-\left(3^{26}.3\right)-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^3.5\)
\(=3^{22}.405⋮405\)
\(\Leftrightarrow81^7-27^9-9^{13}⋮405\rightarrowđpcm\)
\(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=\left(3^{26}.3^2\right)-\left(3^{26}.3\right)-\left(3^{26}.1\right)\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}\left(2^3.5\right)\)
\(=3^{22}.405⋮405\)
\(\Leftrightarrow81^7-27^9-9^{13}⋮405\)
\(\rightarrowđpcm\)
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)
1. (3x - 5)2 - (3x + 1)2 = 8
=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8
=> -6(6x - 4) = 8
=> 6x - 4 = \(\dfrac{-4}{3}\)
\(\Rightarrow x=\dfrac{4}{9}\)
2) 2x(8x - 3) - (4x - 3)2 = 27
=> 16x2 - 6x - 16x2 + 24x - 9 = 27
=> 18x - 9 = 27
=> x = 2
3) (2x - 3)2 - (2x + 1)2 = 3
=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3
=> -4(4x - 2) = 3
=> 4x - 2 = \(\dfrac{-3}{4}\)
\(\Rightarrow x=\dfrac{5}{16}\)
4) (x + 5)2 - x2 = 45
=> (x + 5 - x)(x + 5 + x) = 45
=> 5(2x + 5) = 45
=> 2x + 5 = 9
=> x = 2
5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18
=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18
=> -9x2 + 27x + 9x2 + 18x + 9 = 18
=> 45x + 9 = 18
=> 45x = 9
=> x = \(\dfrac{1}{5}\)
6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13
=> x (x2 - 16) - (x3 - 125) = 13
=> x3 - 16x - x3 + 125 = 13
=> -16x = -112
=> x = 7.
1: =>3x+1=4
=>3x=3
hay x=1
2: \(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^9}{98^3}=\dfrac{1}{2^3}+\dfrac{7^9}{7^6\cdot2^3}\)
\(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^3}{2^3}=\dfrac{344}{2^3}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
=>x=1/2 hoặc x=-1/2
3: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\x-\dfrac{2}{9}=-\dfrac{4}{9}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{9}\end{matrix}\right.\)
4: =>x+2=0 và y-1/10=0
=>x=-2 và y=1/10
#)Giải :
Ta có : \(\left(81^7-27^9-9^{13}\right)\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2-3^{26}.3-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^4.5\)
\(=3^{22}.405\)chia hết cho 405 ( đpcm )
Sửa đề: Chứng minh cái biểu thức trên chia hết cho 405.
Thật vậy,xét theo mod405:
\(81^7\equiv81^5.81^2\equiv81.81^2\equiv81\left(mod405\right)\)
\(27^9\equiv27^5.27^4\equiv162.81\equiv162\left(mod405\right)\)
\(9^{13}\equiv9^7.9^6\equiv324.81\equiv324\)
Suy ra \(81^7-27^9-9^{13}\equiv81-162-324\equiv-405\equiv0\left(mod405\right)\)
Hay ta có đpcm.