K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Đặt A = 1 - 1/22 - 1/32 - 1/42 - ....... - 1/102

=> A>1-1/2.3 - 1/3.4 - 1/4.5 - ........ - 1/10.11

=> A> 1 - (1/2.3 + 1/3.4 + 1/4.5 + ..... + 1/10.11)

=> A> 1 - (1/2 -1/3 +1/3 - 1/4 + 1/4 -1/5+...+1/10-1/11)

=> A> 1 - (1/2 - 1/11)

=> A> 1 - 9/22

mà 9/22  < 1  nên (1 - 9/22) : dương

=> (1/9/22) > 0

=> A>0 (điều phải chứng minh)

27 tháng 4 2017

\(\frac{1}{2^2}>\frac{1}{1.2};\frac{1}{3^2}>\frac{1}{2.3};.....;\frac{1}{10^2}>\frac{1}{9.10}\)

\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-\frac{1}{1.2}-\frac{1}{2.3}-....-\frac{1}{9.10}\)

\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...-\left(\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-....-\frac{1}{9}+\frac{1}{10}=\frac{1}{10}>0\)

=>ĐPCM

29 tháng 3 2017

sửa đề : S < 1

\(s< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+..................+\frac{1}{9.10}\)

\(\Leftrightarrow S< 1-\frac{1}{10}\)

vậy S < 1

8 tháng 4 2017

                Giải 

Nhận xét: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{98^2}< \frac{1}{97.98}\)

gọi dãy số trên là A

Ta có: A< \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{97.98}\) .Ta có \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);...

\(\Rightarrow\)A< \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{98}\)( Mục đích triệt tiêu hết các số)

A<\(\frac{1}{2}-\frac{1}{98}\)=\(\frac{24}{49}\)

 đến đây các cậu tự làm

20 tháng 12 2016

Mình sửa chút: B>1

13 tháng 7 2020

7h30p r nha bạn :))

13 tháng 7 2020

ngày 14/7

13 tháng 3 2020

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

Xét B = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

=\(1-\frac{1}{2018}\)

Xét : \(\frac{2018}{2018}=1\)=) B < 1

khoan hình như sai đề

19 tháng 5 2017

tui chứng minh rồi k đi

19 tháng 5 2017

Ta có :

\(\frac{1}{2^2}>\frac{1}{1.2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}\)

\(\frac{1}{4^2}>\frac{1}{3.4}\)

\(....\)

\(\frac{1}{100^2}>\frac{1}{99.100}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>1-\frac{1}{100}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{100}{100}-\frac{1}{100}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{99}{100}\)

Vậy bài toán đã được chứng minh.

18 tháng 3 2021

chép :https://olm.vn/hoi-dap/detail/99048356827.html

21 tháng 3 2021
1/5,1/6,1/7,1/8
17 tháng 4 2016

1/3^2 < 1/2.3

1/4^2 < 1/3.4

.... 

1/300^2 < 1/299.300

=> A < 1/2^2 + 1/2.3 + 1/3.4 + ... + 1/299.300

A < 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/299 - 1/300

A< 1/4 + 1/2 - 1/300

A< (1/4 + 1/2) - 1/300

A< 3/4 - 1/300 <3/4