Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2n+5\right)^2-4n^2=\left(2n+5+2n\right)\left(2n+5-2n\right)=5.\left(4n+5\right)⋮\)
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)
2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)
Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô
Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số
Tk mk nha