K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)

15 tháng 5 2018

Ta xét từng trường hợp sau:

 Nếu n là số lẽ thì n chia hết cho 2 =>    B chia hết cho 2

Nếu n chẵn thì n+2 chẵn => n+2 chia hết cho 2 => B chia hết cho 2

Vậy \(B=\frac{n+2}{3n+1}\)chia hết cho 2

6 tháng 8 2016

n - 5 chia hết cho n+ 3

=> n.(n - 5) chia hết cho n2 + 3

=> n2 + 3 - 5n - 3 chia hết cho n2 + 3

=> n2 + 3 - (5n + 3) chia hết cho n2 + 3

Do n2 + 3 chia hết cho n2 + 3 => 5n + 3 chia hết cho n2 + 3

Mà theo đề bài, n - 5 chia hết cho n2 + 3 => 5.(n - 5) chia hết cho n2 + 3

=> 5n - 25 chia hết cho n2 + 3

=> (5n + 3) - (5n - 25) chia hết cho n2 + 3

=> 5n + 3 - 5n + 25 chia hết cho n2 + 3

=> 28 chia hết cho n2 + 3

Mà n2 + 3 > hoặc = 3 => n2 + 3 thuộc {4 ; 7 ; 14 ; 28}

=> n2 thuộc {1 ; 4 ; 11; 25}

=> n2 thuộc {1 ; 4 ; 25}

=> n thuộc {1 ; -1 ; 2 ; -2 ; 5 ; -5}

Thử lại ta thấy giá trị n = -1; n = 2; n = -5 vô lí

Vậy n thuộc {1 ; -2 ; 5}

6 tháng 8 2016

thánh biết

13 tháng 9 2018

Tại sao phài chứng minh khi nhìn vào đã biết

13 tháng 9 2018

Easy:Tck cho mh đi

13 tháng 9 2018

có (n+2003^2004)

nếu n là số lẻ thì(n+2003^2004) là số chẵn

nếu n là số chẵn thì(n+2003^2004) là số lẻ

có (n+2003^2004) 

nếu n là số lẻ thì(n+2003^2004) là số lẻ

nếu n là số chẵn thì(n+2003^2004) là số chẵn

chẵn x lẻ =chẵn

lẻ x chẵn=chẵn

=>(n+2003^2004)x(n+2004^2005)  chia hết cho 2

15 tháng 10 2017

Ta co:   B= 1 + 3 +32 + 33 + ....... + 399

                  = (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3) 

               = (1 + 3)(1 + 32 +34 + ......... + 398)

               = 4(1 + 32 +34 + ........... + 398\(⋮\)

    Vay B \(⋮\)

   k cho mk nha

15 tháng 10 2017

B=(1+3)+(32+33)+...+(398+399)

  =(1+3)+32(1+3)+...+398(1+3)

  =4+32.4+.....+398.4

  =4.(1+32+...+398)

vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)

I don't now

...............

.................

23 tháng 7 2018

a) ta có: n -6 chia hết cho n - 2

=> n - 2 - 4 chia hết cho n - 2

mà n - 2 chia hết cho n - 2

=>  4 chia hết cho  n - 2

=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}

...

rùi bn tự xét giá trị để tìm n nha

câu b;c ;ebn làm tương tự như câu a nha

d) ta có: 3n -1 chia hết cho 11 - 2n

=> 2.(3n-1) chia hết cho 11 - 2n

6n - 2 chia hết cho 11 - 2n

=> -2 + 6n chia hết cho 11 - 2n

=> 31 - 33 + 6n chia hết cho 11 - 2n

=> 31 - 3.(11-2n) chia hết cho 11 - 2n

mà 3.(11-2n) chia hết cho 11 - 2n

=> 31 chia hết cho 11 - 2n

=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)

...

16 tháng 1 2019

a, n - 1  chia hết cho n  - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1 

Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1 

=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6 

b, Tương tự 

c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)

\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)

16 tháng 1 2019

a) Ta có : 3n + 2 chia hết cho n - 1

         => 3n + 2 - 3.( n - 1) chia hết cho n - 1

         => 3n + 2 - ( 3n - 3 ) chia hết cho n - 1

        =>  3n + 2 - 3n + 3 chia hết cho n - 1

         => 5 chia hết cho n -1

        => n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}

Ta có bảng ;

n-11-15-5
n206-6

 Vậy n thuộc { 2;0;6;-6}

b) Ta có : 3n + 24 chia hết cho  n -4 

           => 3n + 24 - 3.(n-4) chia hết cho n -4

           => 3n + 24 - (3n - 12 ) chia hết cho n -4

            => 3n + 24 - 3n + 12 chia hết cho n -4

            => 36 chia hết cho n -4

            => n - 4 thuộc Ư(36) ( bạn tự làm nhé)

c) Tương tự nhé

5 tháng 11 2016

Vi a Không chia hết cho 3 nên a chia cho 3 dư 1 hoặc 2

Nếu a chia ho 3 dư 1 đặt a = 3k +1

Suy ra a^2=(3k+1)^2=9k^2+6k+1=3k*(3k+2)+1

Vì 3k chia hết cho 3 nên 3k*(3k+2) chia hết cho 3

Mà 1 chia co 3 dư 1 nên 3k*(3k+2) +1 chia cho 3 dư 1 hay a^2 chia cho 3 dư 1

23 tháng 10 2016

=>  3n +4 chia hết cho 3n-3

=> => 3n+4 chia hết cho 3n+4 -7

=> 7 chia hết cho 3n + 4

=> 3n+4 thuộc ước 7 = +- 7, +-1

=> 3n=.............

n=.....

23 tháng 10 2016

Ta có: 3n+4

         =3n-3 +7

Ta thấy:3n-3 chia hết cho n-1=)1 cũng chia hết cho n-1 mà nEN

(=) n-1=0 =) n=1

                    Vậy n=1

*lưu ý: E là thuộc