K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

dùng đồng dư thức nha

15 tháng 8 2017

9 đồng dư với - 1 (mod10)

\(\Rightarrow9^{9^{9^9}}\)đồng dư với - 1 (mod10)

\(\Rightarrow9^{9^9}\)đồng dư với - 1 (mod10)

\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)đồng dư với (-1) - (-1) = 0 (mod10)

Vậy ta có ĐPCM

Câu b tương tự

29 tháng 9 2018

\(9^{9^{9^9}}-9^{9^9}=9^{2a+1}-9^{2b+1}\equiv9-9\equiv0\left(mod10\right)\)

29 tháng 9 2018

Xét \(9^x\)
Nếu \(x=2k\)thì \(9^x=9^{2k}=81^k\)Luôn tận cùng là 1

Nếu \(x=2k+1\)thì \(9^x=9^{2k+1}=9.81^x\)Luôn tận cùng là 9
Ta có: \(9^9\)tận cùng là 1 là số lẻ

\(\Rightarrow9^{9^9}\)tận cùng là 1, đồng thời cũng là số lẻ

\(\Rightarrow9^{9^{9^9}}\)cũng tận cùng là 1

\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)tận cùng là 0 nên chia hết cho 10
 

29 tháng 9 2018

Bạn ơi mình nhầm nhé.

\(9^9;9^{9^9};9^{9^{9^9}}\)đều tận cùng là 9, mình viết nhầm thành 1 nha. Xin lỗi bạn.

4 tháng 7 2018

\(\sqrt{9-\sqrt[]{17}}+\sqrt{9+\sqrt{7}=8}\)

\(9-17+9+7=8\)

\(-8+16=8\)

5 tháng 7 2018

Sửa đề: \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)

\(A=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)

NV
22 tháng 5 2019

\(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{2^2+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

\(\sqrt{9-\sqrt{17}}\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)

\(=\sqrt{81-17}=\sqrt{64}=8\)