K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

a. (a-b)+(c-d)=(a+c)-(b+d)

Ta có: VP=(a+c)-(b+d)=a+c-b-d=(a-b)+(c-d)=VT

=> VT=VP (đpcm)

b. Ta có: VT=a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)=VP

=> VT=VP (đpcm)

c. Ta có: VT=(a+b)(c+d)-(a+d)(b+c)=ac+ad+bc+bd-ab-ac-bd-cd=ad+bc-ab-cd

VP=(a-c)(d-b)=ad-ab-cd+bc=ad+bc-ab-cd=VT

=> VT=VP (đpcm)

27 tháng 12 2015

Chtt có đó tick mình nha

A) a.(b+c) - a.(b+d)= a.(c-d)

=> ab+ac -ab-ad=ac-ad

=>ac-ad=ac-ad(đpcm)

các câu kia bạn lm tương tự

bn vào câu hỏi tương tự và tìm câu hỏi của trần thị mỹ trang tham khảo

4 tháng 8 2019

1) a( b+c) - b(a-c) = ( a+b) c

VT = a( b+c) - b(a-c) 

= ab + ac - ab + bc

= ac + bc

= c(a + b) (=VP)

2)a (b - c)- a (b+d)= - a (c+d)

VT= a (b - c)- a (b+d)

= ab - ac - ab - ad

= -ac - ad

= -a(c + d) (=VP)

a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)

\(a-b+c-d=a+c-b-d\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)

\(a-b-c+d=a+d-b-c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)

\(a-b+c=a-b+c=a+c-b\)

\(\Rightarrowđpcm\)

d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)

\(a-b-b-c+c-a-a+b+c=-a-b+c\)

\(-a-b+c=-a-b+c\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)

\(a-b-c+b+c-1=b-c+6-7+a-b+c\)

\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

25 tháng 1 2017

Mik ko viết lại đề:

a, = a - b + c - a - c = ( a- a) + ( c- c) + b = b

b, = a + b - b + a + c = ( a + a) + ( b - b) + c = 2a + c

c, = -a -b + c + a - b -c = ( -a + a) + ( -b -b) + ( c - c) = - 2b

d, = ab + ac - ab - ad  = ac - ad = a(c - d)

e, = ab - ac + ad + ac = ab + ad = a( b + d)

Nguyen Thu Ha học giỏi thế

Làm đúng rồi

Ủng hộ nha

5 tháng 5 2019

a,  Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3 
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn

232 theo mk là thế 

1 tháng 1 2016

Ta có

\(\left(a-b\right)+\left(c-d\right)=a-b+c-d=\left(a+c\right)-\left(b+d\right)\)

b

\(\left(a-b\right)-\left(c-d\right)=a-b-c+d=\left(a+d\right)-\left(b+c\right)\)

c,

\(-\left(-a+b+c\right)+\left(b+c-1\right)=a-b-c+b+c-1=\left(b-c+6\right)-\left(7-a+b\right)+c\)Nếu thấy bài làm của mình đúng thì tick nha ban.Nhân dịp đầu xuân năm mới mình chúc bạn vui vẻ mạnh khoẻ nha.

a,         a(b+c)-a(b+d)=a.b+a.c-a.b-a.d=(a.b-a.b)+(a.c-a.d)=0+a(c-d)=a(c-d)

b,         a(b-c)+a(d+c)=a.b-a.c+a.d+a.c=(a.b+a.d)+(a.c-a.c)=a(b+d)-0=a(b+d)

Bài làm

a) Biến đổi vế trái, ta có:

VT = a( b + c ) - a( b + d )

= ab + ac - ab - ad

= ac - ad

= a( c - d ) = VP

Vậy a( b + c ) - a( b + d ) = a( c - d ) ( đpcm )

b) Biến đổi vế trái, ta có:

VT = a( b - c ) + a( d + c ) 

= ab - ac + ad + ac

= ab + ad

= a( b + d ) = VP

Vậy a( b - c ) + a( d + c ) = a( b + d ) ( đpcm )

c) Biến đổi vế trái, ta có:

VT = a( b - c ) - a( b + d ) 

= ab - ac - ab - ad

= -a( c + d ) = VP

Vậy a( b - c ) - a( b + d ) = a( c + d )

# Học tốt #