K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)

Do đó: \(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

=>\(C< 1-\dfrac{1}{n}< 1\)

13 tháng 12 2022

Bài 4:

=>(x-5)*3/10=1/5x+5

=>3/10x-3/2=1/5x+5

=>1/10x=5+3/2=6,5

=>0,1x=6,5

=>x=65

9 tháng 5 2018

Gọi tổng trên là A

1/2.2<1/1.2

1/3.3<1/2.3

........

1/n.n<1/(n-1).n

=>A< 1/1.2+1/2.3+.....+1/(n-1).n

=> A<1-1/2+1/2-1/3+....+1/(n-1)-1/n

=> A< 1-1/n<1

=>A<1

9 tháng 5 2018

chúc bạn một kì nghỉ hè vui vẻ

22 tháng 7 2018

N = \(\dfrac{1}{10^2}+\dfrac{1}{11^2}+\dfrac{1}{12^2}+...+\dfrac{1}{n^2}\)

= \(\dfrac{1}{10.10}+\dfrac{1}{11.11}+\dfrac{1}{12.12}+...+\dfrac{1}{n.n}\)

=> N < \(\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+...+\dfrac{1}{\left(n-1\right).n}\)

=> N < \(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=>N< \dfrac{1}{9}-\dfrac{1}{n}\)

=> N < \(\dfrac{1}{9}\)

Vậy N < \(\dfrac{1}{9}\)

22 tháng 3 2019

???

11 tháng 4 2017

Help me!!!khocroi

11 tháng 4 2017

Bài này giải ra dài lắm;

Gợi ý : với câu a) cm 1<A<2

với câ u b) 0<B<1

với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé

Mong bạn giải ra

7 tháng 3 2017

Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)

\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\)

22 tháng 1 2018
Ta có: A=152+253+...+11512A=152+253+...+11512

⇒5A=15+252+...+11511⇒5A=15+252+...+11511

⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512

⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512

⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511

⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)

⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1

⇒A<116⇒A<116

leuleu
23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)