K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

3: 

\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)

\(=169^2-2\cdot60^2=21361\)

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

6 tháng 7 2021

Ta có A = 2x2 + 8x  + 15 = 2x2 + 8x + 8 + 7 

 = 2(x2 + 4x + 4) + 7 = 2(x + 2)2 + 7 \(\ge7>0\)

b) Ta có A = x2 - 2x + y2 + 4y + 6 

 =(x2 - 2x  +1) + (y2 + 4y + 4) + 1

= (x - 1)2 + (y + 2)2 + 1 \(\ge1>0\)

10 tháng 7 2021

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)

Vậy ta có đpcm 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)

Vậy ta có đpcm 

10 tháng 7 2021

Trả lời:

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy A > 0 với mọi x 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1\ge1>0\forall x;y\)

Vậy B > 0 với mọi x;y

21 tháng 10 2017

- Câu a): *y^2 , sai đề y2.

21 tháng 10 2017

Câu b:

Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)

\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)

\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)

\((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)

\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)

\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

8 tháng 7 2018

1/

a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

2/

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x-1=0 <=> x=1

Vậy Pmax = 4 khi x = 1

b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy Mmax = 3/4 khi x = 1/2, y = -3