Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\)đỉnh nên \(3Đ=2C\)do đó \(Đ\) là sỗ chẵn.
HT
giả sử (n!+1;(n+1)!+1)=a(n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a
ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!
hay p | n.n! nên p là số nguyên tố bé hơn n
nên p | n! mà p| n! +1 .mâu thuẫn
vậy giả sử sai. nên (n!+1;(n+1)!+1)=1
giả sử (n!+1;(n+1)!+1)=a(n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a
ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!
hay p | n.n! nên p là số nguyên tố bé hơn n
nên p | n! mà p| n! +1 .mâu thuẫn
vậy giả sử sai. nên (n!+1;(n+1)!+1)=1
Giả sử đa diện (H)(H) có các đỉnh là A1,…AdA1,…Ad, gọi m1,…mdm1,…md lần lượt là số các mặt của (H)(H) nhận chúng là đỉnh chung, ở đó m1,…mdm1,…md là những số lẻ.
Như vậy mỗi đỉnh AkAk có mkmk cạnh đi qua.
Ta có: đỉnh A1A1 có m1m1 cạnh đi qua.
đỉnh A2A2 có m2m2 cạnh đi qua.
...
đỉnh AdAd có mdmd cạnh đi qua.
Do đó số các cạnh (có thể trùng nhau) của đa diện là m1+m2+...+mdm1+m2+...+md.
Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.
Vậy số cạnh thực tế của (H)(H) bằng
c=12(m1+m2+...+md)c=12(m1+m2+...+md)
Vì cc là số nguyên, m1,…mdm1,…md là những số lẻ nên dd phải là số chẵn.
Ví dụ : Hình chóp ngũ giác.
Đỉnh S là đỉnh chung của 5 mặt, tất cả các đỉnh còn lại là đỉnh chung của 3 mặt, hình chóp ngũ giác có 6 đỉnh
giup mình cày Sp vơi
Chọn A.
Đường thẳng (Δ) đi qua M(0; 1; 2) và có một vectơ chỉ phương là
Mặt cầu (S) có tâm I(1; 0; -2) và bán kính
Ta có
không cắt mặt cầu (S)
Chọn A.
Đường thẳng (Δ) đi qua M(0; 1; 2) và có một vectơ chỉ phương là
Mặt cầu (S) có tâm I(1; 0; -2) và bán kính
Ta có
không cắt mặt cầu (S)
-20=-20
16-36=25-45
42-4.9=52-5.9
42-2.4.9/2+81/4=52-2.5.9/2+81/4
(4−9/2)^2=(5−9/2)^2
4-9/2=5-9/2
4=5
4-4=5-4
0=1
tk nha