Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MINH QUÂN ƠI BÀI ĐÓ DỄ MÀ
I AM TRUNG QUÂN HAHAHAHAHA
2011^2002 = 2011^2000 . 2011^2 = (2011^5)^400 . 2011^2 = (.......5)^400 . ....1 = .....5 . ......1 = ........5 2009^2000 = (2009^5)^400 = tận cùng là 9 hoặc 1 vậy A ko chia hết cho 5 B = 2 + 2^2 + 2^3 + ..... + 2^100 2B = 2^2 + 2^3 +...................+ 2^101 B = 2^101 - 2 = 2^100 . 2 -2 = (2^4)^25 . 2 - 2 = 16^25 .2 - 2 = .....6 . 2 -2 = .......2 - 2 = .......0 vậy B chia hết cho 2
(2a3x2y).(8a2x3y4).(16a3x3y3)
= 2a3 . x3 . 16a3 . x3 .y3 . x2.8a2 .y4
= a3x3a3 . x3 .y3 .2.16.8. x2.a2y4
=(axaxy)3 .y4 44 .(xy)2
=(axaxy)3 .(4y)4 (xy)2
1) đang nghĩ
2)
2 + 22 + 23 + ... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 299 + 2100 )
= 2.(1+2) + 23(1+2) + ... + 299(1+2)
= 2.(2 + 23 + ... + 299 ) chia hết cho 2
=> đpcm
bạn tách các số ra:
(2*8*16)(a^3*a^2*a^3)(x^2*x^3*x^3)(y*y^4*y^3)
=256a^8x^8y^8=(2axy)^8
CHÚ BẠN HỌC TỐT!!!
bài 1: với x,y,z thuộc N; x<y<z ta có: 2^x + 2^y + 2^z = 2336
=> 2^z <2336
=> z nhỏ hơn hoăc 11 (1)
ta có: 2^z + 2^z + 2^z > 2^x + 2^y + 2^z
=> 3.2^z > 2336
=> 2^z nhỏ hơn hoặc = 778
=> z nhỏ hơn hoặc = 10 (2)
từ (1) và (2) suy ra z = {10; 11}
TH1: z = 10
=> 2^x + 2^y = 1312
=> 2^y < 1312
=> y nhỏ hơn hoặc = 10 (3)
ta có 2.2^y > 2^x + 2^y
=> 2.2^y > 1312
=> 2^y > 656
=> y nhỏ hơn hoặc = 10 (4)
từ (3) và (4) => y = 10 mà z = 10 ( LOẠI)
TH2: z = 11
=> 2^x + 2^y = 288
=> 2^y < 288
=> y nhỏ hơn hoặc = 8 (5)
ta có 2.2^y > 2^x + 2^y
=>2.2^y > 288
=> 2^y > 144
=> y nhỏ hơn hoặc bằng 8 (6)
từ (5) và (6) => y = 8
nhỏ hơn hoặc= 2^x + 2^8 = 288
=> 2^x = 32
=> x= 5 (chọn)
KL: vậy x = 5; y = 8; z = 11.
có VT = \(\left(x+y\right)\cdot\left(x-y\right)\)
= \(^{x^2+xy-xy-y^2}\)
= \(^{x^2-y^2}\)= VP ( đfcm)
cho tớ hỏi làm sao cậu k đc 3 k vậy, chỉ mk cách làm cới 3 => @