K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

x5-x+2  =  x(x4-1)+2

=> x4-1 =  -2/x

=> x ko the la so chinh phuong

19 tháng 5 2017

x không là số chính phương 

17 tháng 3 2017

Ta có    \(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮3\)

mà \(x\left(x+1\right)\left(x-1\right)\left(x^2+1\right)⋮3\)cho nên x5-x+2 chia 3 dư 2 nên không phải là số chính phương.

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

3 tháng 8 2023

\(p=\left[\left(x+5\right).\left(x+11\right)\right].\left[\left(x+7\right).\left(x+9\right)\right]+16=\)

\(=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16=\)

\(=\left(x^2+16x\right)^2+118.\left(x^2+16x\right)+3481=\)

\(=\left(x^2+16x\right)^2+2.\left(x^2+16x\right).59+59^2=\)

\(=\left[\left(x^2+16x\right)+59\right]^2\) là một số chính phương

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)