Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x+3< 0\)
\(=>x+5;x+9\)cùng dấu
Ta có 2 trường hợp:
\(TH1:\hept{\begin{cases}x+5>0\\x+9>0\end{cases}}\)
\(=>\hept{\begin{cases}x>-5\\x>-9\end{cases}}\)
\(=>x>-5\)
\(TH2:\hept{\begin{cases}x+5< 0\\x+9< 0\end{cases}}\)
\(=>\hept{\begin{cases}x< -5\\x< -9\end{cases}}\)
\(=>x=-9\)
VẬY : x= - 5 HOẶC x= - 9
3(x-2)-2(3x+1)>0
<=>3x-6-6x-2>0
<=>-2x-8>0
<=>-x-4>0
<=>x>-4
\(\frac{x+2}{x+3}>0\) \(\Leftrightarrow\hept{\begin{cases}x+2>0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x+3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>-3\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< -3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>-2\\x< -3\end{cases}}\)
\(\frac{x+2}{x+3}>0\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2>0\\x+3>0\end{cases}}\\\hept{\begin{cases}x+2< 0\\x+3< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x+2>0\\x+3< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x>-2\\x< -3\end{cases}}\)
a) x2 + x + 2
= (x2 + x + 1) + 1
= (x + 1)2 + 1 > 0
b) x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
c) x(x - 4) + 10
= x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0
d) x(2 - x) - 4
= -x2 + 2x - 4
= -(x2 - 2x + 4)
= -[(x2 - 2x + 1) + 3]
= -[(x - 1)2 + 3] < 0
e) x2 - 5x + 2017
= (x2 - 5x + 25) + 2012
= (x - 5)2 + 2012 > 0
1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)
Vậy ...................
b/ ĐKXĐ:\(x\ne2;x\ne5\)
.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x^2-10x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)
Vậy ..............
`Answer:`
`1.`
a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)
b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)
\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)
`2.`
\(ĐKXĐ:x\ne-m-2;x\ne m-2\)
Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)
a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)
b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì
\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)
a) A=x4 +3x2+3
A=(x2)2+2.\(\dfrac{3}{2}\) x2+\(\left(\dfrac{3}{2}\right)^2\) +\(\dfrac{3}{4}\)
A=(x4+3x2+\(\dfrac{9}{4}\) )+\(\dfrac{3}{4}\)
A=\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)
do \(\left(x^2+\dfrac{3}{2}\right)^2\ge0\forall x\)
=>\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=>A≥\(\dfrac{3}{4}\)
vậy A >1(đpcm)