Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3 trường hợp:
+ n chia hết cho 3
+ n chia 3 dư 1
+ n chia 3 dư 2
~ Với trường hợp n chia hết cho 3, ta có:
n^2 chia hết cho 3
n chia hết cho 3
2012 không chia hết cho 3
=> n^2 + n +2012 không chia hết cho 3 (1)
~ Với trường hợp n chia 3 dư 1, ta có:
n^2 chia 3 dư 1
n chia 3 dư 1
2012 chia 3 dư 2
=> n^2+n+2012 không chia hết cho 3 (2)
~ Với trường hợp n chia 3 dư 2, ta có:
n^2 chia 3 dư 1
n chia 3 dư 2
2012 chia 3 dư 2
=> n^2+n+2012 không chia hết cho 3 (3)
Từ (1); (2); (3) ta đc điều cần chứng minh
a. Giả sự n chia hết cho 2 => n+6 chia hết cho 2 => A chia hết cho 2
Giả sư n ko chia hết cho 2 => n + 7 chia hết cho 2 => A chia hết cho 2
b. Giả sử n chia hết cho 2 => n^2 chia hết cho 2 => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Gia sử n ko chia hết cho 2 => n^2 ko chia hết cho 2. => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
Nếu n=3k(k thuộc Z)
thì BT trên=(3k)2+3k+2012=(3k)(3k+1)+2012 ko chia hết cho 3
Nếu n=3k+1(k thuộc Z)
thì BT trên=(3k+1)2+(3k+1)+2012=(3k+1)(3k+2)+2012 ko chia hết cho 3
Nếu n=3k+2(k thuộc Z)
thì BT trên=(3k+2)2+(3k+2)+(3*670+2)=(3k+2)(3k+3)+2010+2 không chia hết cho 3
Vậy với mọi n nguyên thì n2+n+2012 ko chia hết cho 3