Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử còn 3 số lẻ liên tiếp là 3 số nguyên tố khác 3,5,7 là 2a+1,2a+3,2a+5.
Vì đây là 3 số lẻ liên tiếp nên sẽ có 1 số trong dãy số 2a+1,2a+3,2a+5 chia hết cho 3. Vì 2a+1>3 =>2a+3,2a+5>3 => có 1 số bất kì chia hết cho 3 nên là hợp số. do đó điều giả sử trên sai. Vậy chỉ có 3 số 3,5,7 là 3 số nguyên tố thỏa mãn bài toán
Gọi 3 số nguyên tố lẻ liên tiếp là a ; a + 2 ; a + 4 (a là số nguyên tố lẻ)
- Nếu a = 3 thì có ba số 3;5;7 thỏa mãn đề bài.
- Nếu a > 3 thì a = 3k + 1 hoặc a = 3k + 2 (k \(\in\) N*)
+) Với a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, là hợp số, loại.
+) Với a = 3k + 2 thì a + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3, là hợp số, loại.
Vậy chỉ có 3 số nguyên tố lẻ liên tiếp là 3;5;7.
Vì tập hợp N chỉ bao gồm các số tự nhiên nên sẽ có ba số lẻ liên tiếp là số nguyên.
tất nhiên là vậy 3,5,7 thuộc N
và cũng thuộc Z
đúng 100%
làm vậy sẽ đc 10 điểm
dĩ nhiên rồi vì số lẻ là tập con của N
mà N là tập con của Z( số nguyên )
=> điều phải chứng minh
mà đề bạn viết sai đề rồi phải là :Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên tố
thì khi ấy cặp ba số là :(1,3,5)
Vì 3,5 ,7đều chia hết cho chính nó và 1 nên chúng là số nguyên tố!
ai chẵng biêt vậy