Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không rõ là bao nhiêu số 1987 lặp lại và bao nhiêu số 0 lặp lại, ví dụ số 19870 thì không chia hết cho 2017
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
Xét 2018 số: 2016; 20162016; 201620162016;................; 20162016.........2016 (1)
2018 số 2016
Có 2018 số, mà chỉ có 2017 trường hợp về số dư trong phép chia cho 2017 nên theo nguyên lý Đi rích lê thì có ít nhất 2 số có cùng số dư khi chia cho 2017
Gọi 2 số đó là 20162016..........2016 và 20162016................2016 (1 <= m < n <= 2018)
m chữ số 2016 n chữ số 2016
Xét hiệu:
20162016............2016 - 20162016........2016 = 20162016.........2016.000000....0000
n chữ số 2016 m chữ số 2006 n - m cs 2016 4m chữ số 0
= 20162016........2016.104m chia hết cho 2017
Mà ƯCLN(104m,2017) = 1
=> 20162016.........2016 chia hết cho 2017
n - m cs 2016
Rõ ràng 20162016.......2016 là 1 số thuộc dãy (1)
n - m cs 2016
Vậy tồn tại 1 số gồm toàn cs 2016 chia hết cho 2017
19871987..........198700...00=1987...1987.100...0(k chữ số 0)
ta xét 2018 số 1987;19871987;....19871987
trong 2018 số đã cho sẽ có 2 số chia 2017 cùng số dư
đặt 2 số đó là 1987..1987(n lần 1987);1987...1987(m lần 1987)
=>1987...1987-1987..1987=1987...198700..0(m-n chữ số 0)
=>1987..1987.100...0 chia hết cho 2017(m-n chữ số 0)
vì (100...0;2017)=1=>1987...1987 chia hết cho 2017
=>1987..198700...0 chia hết cho 2017
=>đpcm
Xét 2018 số sau: 1987; 19871987; ....; 19871987.....1987
Chia các số đó cho 2017, số dư có thể là 0; 1; 2; ...2016
từ 0 đến 2016 có 2017 số
Theo Nguyên lí Dirichlê, tồn tại ít nhất 2 trong 2018 số trên có cùng số dư khi chia cho 2017 => hiệu hai số đó chia hết cho 2017
Giả sử là 19871987..1987 (có m số 1987); và 19871987....1987 (có n số 1987) (m > n)
=> Hiệu của chúng bằng 19871987...198700..0 (có 4.n chữ số 0) chia hết cho 2017