Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}=\frac{3a+5b}{3c+5d}\)
=> Đpcm
Chúc bạn làm bài tốt
vì a/b= c/d
⇒ a+b/c+d=3a+5b/3c+5d=3a-5b/3c-5d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
3a+5b/3c+5d=3a-5b/3c-5d
⇒ 3a+5b/3a-5b=3c+5d/3c-5d (đpcm)
Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}\)
=>\(\frac{a}{c}=\frac{3a+4b}{3c+4d}=>\frac{3c+4d}{c}=\frac{3a+4b}{a}\)(đpcm)
a/b=c/d
=>a/c=b/d=3a/3c=4b/4d=(3a+4b)/(3c+4d) (tính chất dãy tỉ số = nhau)
có a/c=(3a+4b)/(3c+4d)
=>dpcm
a, Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b, Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)
Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\)\(\left\{\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a)Xét \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét \(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh
b)Xét \(VT=\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\left(1\right)\)
Xét \(VP=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Vậy...
đặt \(\frac{a}{b}\)= \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)
ta có : \(\frac{7a-4b}{3a+5b}\)= \(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)
\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)= \(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)= \(\frac{7k-4}{3k+5}\)( 2 )
từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh )
Xét \(\frac{a}{b}=k;\frac{c}{d}=k\)
=> a= bk; c= dk
Thay:
\(\frac{a}{3a+b}=\frac{bk}{3.bk+b}=\frac{bk}{3.b\left(k+1\right)}=\frac{k}{3.\left(k+1\right)}\) (1)
\(\frac{c}{3c+d}=\frac{dk}{3.dk+d}=\frac{dk}{3.d\left(k+1\right)}=\frac{k}{3.\left(k+1\right)}\) (2)
Ta thấy (1)= (2)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\) (dpcm)
theo bài ra ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{b+3a}{d+3c}\)
=> \(\frac{a}{c}=\frac{3a+b}{3c+d}\)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\) (đpcm)