Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)
\(\Rightarrow\Delta ABC\)vuông tại C
b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)
\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)
\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)
\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
hay ΔBCA vuông tại A
a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)
Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)
\(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)
\(=4R^2\)
\(=BC^2\)
( do BC là đường kính, BC=2R)
Vậy tam giác ABC là tam giác vuông
\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)
suy ra góc B=75 độ
suy ra góc C=90 độ -75 độ =15 độ
1:
cot B=5/8
=>tan B=8/5
=>AC/AB=8/5
=>AC=8cm
=>BC=căn 5^2+8^2=căn 89(cm)
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C