K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Lê Minh Cường

Cm \(\sqrt{5}\)là số vô tỉ

    Giải

Giả sử \(\sqrt{5}\)là số vô tỉ thì khi đó \(\sqrt{5}\) được viết dưới dạng \(\frac{m}{n}\)

\(\sqrt{5}=\frac{m}{2}\Rightarrow5=\frac{m^2}{n^2}\)   ( * ) 

Ở đẵng thức ( * ) cm m2 \(⋮\) 5 => m \(⋮\)5

Đặt m = 5k ta có : m2 = 25k2        ( **) 

Từ ( * ) và ( ** ) suy ra : 

5n2 = 25k2 => n2 = 5k2                           ( ***) 

Đẳng thức ( ***) cm n2 \(⋮\)5 mà 5 là số nguyên tố nên n \(⋮\)5

Vậy m,n chia hết cho 5 nên \(\frac{m}{n}\) chưa thể tối giản ( trái với gt ) nên \(\sqrt{5}\) là số hữu tỉ. 

P/s : có 1 câu hỏi mà bảo dài dòng tek!?

27 tháng 8 2017

VD: \(\sqrt{5}\)là số hữu tỉ

\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in z;b\ne0\right)\)

Tổng quát VD \(\left(a;b\right)=1\)

\(\Rightarrow5=\frac{a^2}{b^2}\)

\(\Leftrightarrow a^2=5b^2\)

\(\Rightarrow a^2⋮5\)

Ta có : 5 số nguyên tố

\(\Rightarrow a⋮5\)

\(\Rightarrow a^2⋮25\)

\(\Rightarrow5b^2⋮25\)

\(\Rightarrow b^2⋮5\)

\(\Rightarrow b⋮5\)

\(\Rightarrow\left(a;b\right)\ne1\)

\(\Rightarrow\)giả sử bị sai

\(\Rightarrow\sqrt{5}\)là số vô tỷ

23 tháng 5 2018

giả sử √7 là số hữu tỉ 
=> √7 = p/q , với p, q thuộc N*, (p,q) = 1 
=> 7 = p²/q² => q² = p²/7 => p² chia hết cho 7, mà 7 nguyên tố => p chia hết cho 7 
đặt p = 7n, thay vào trên ta có: q² = 49n²/7 = 7n² => n² = q²/7 
=> q² chia hết cho 7, do 7 nguyên tố => q chia hết cho 7 
thấy p và q đều chia hết cho 7: vô lí do giả thiết p, q nguyên tố cùng nhau 

Vậy √7 là số vô tỉ 

google nghen!

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

8 tháng 7 2015

dùng phương pháp phản chứng

giả sử \(\sqrt{5}\) ko là số vô tỉ tức là số hữu tỉ, từ đó luôn tồn tại phân số \(\frac{m}{n}\)=\(\sqrt{5}\), với \(\frac{m}{n}\)là phân số tối giản (*)

ta có \(\frac{m}{n}\)\(\frac{5n-m}{m-n}\)(1)

mặt khác vì \(\sqrt{5}\) là số hữu tỉ >1 nên m>n 

                                                  =>m>5n-m  (2)

từ (1),(2)=> \(\frac{5m-n}{m-n}\) < \(\frac{m}{n}\) hay phân số \(\frac{m}{n}\) là phân số chưa là tối giản trái với giải thiết (*) của đề bài

Vậy \(\sqrt{5}\) phải là số vô tỉ

8 tháng 10 2019

Mọi số n không là số chính phương thì \(\sqrt{n}\)là số vô tỉ nên

\(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ

Suy ra \(\sqrt{2}+\sqrt{3}\)là số vô tỉ

8 tháng 10 2019

Đặt \(x=\sqrt{2}+\sqrt{3}\)

Giả sử x là số hữu tỉ , nghĩa là \(x=\frac{p}{q}\left(p,q\in N,q\ne0\right)\)

Ta có : \(\frac{p}{q}=\sqrt{2}+\sqrt{3}\)

\(\Leftrightarrow\frac{p^2}{q^2}=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\frac{p^2}{q^2}-5=2\sqrt{6}\) ( vô lí )

Vì \(\frac{p^2}{q^2}\) là số hữu tỉ và \(2\sqrt{6}\) là số vô tỉ

Vậy \(x=\sqrt{2}+\sqrt{3}\) không phải là số hữu tỉ 

\(\Rightarrow x=\sqrt{2}+\sqrt{3}\) lá số vô tỉ

Chúc bạn học tốt !!!

7 tháng 1 2019

bn nè căn 7 là số vô tỉ vì căn 7 =2,tá lả tùm lum tùm lum tá lả...............

30 tháng 11 2020

- Giả sử \(\sqrt{7}\)là số hữu tỉ 

\(\Rightarrow\sqrt{7}=\frac{m}{n}\)tối giản 

\(\Rightarrow7=\frac{m^2}{n^2}\)hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chính tỏ \(m^2⋮7\)mà 7 là số nguyên tố => m chia hết cho 7 

- Đặt \(m=7k\left(k\in Z\right)\), ta có : \(m^2=49k^2\left(2\right)\) 

Từ (1) và (2) suy ra : \(7n^2=49k^2\)nên \(n^2=7k^2\left(3\right)\)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên nên \(n⋮7\)

- m và n cùng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản ( trái với giả thiết )

\(\Rightarrow\sqrt{7}\)không phải là số hữu tỉ , mà là số vô tỉ 

19 tháng 10 2017

 giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = 7b² 
=> a² ⋮ 7 
Vì số 7 là số nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49 
=> b² ⋮ 7 
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Mình đánh trong Word nên phông hơi khác, thông cảm nha

5 tháng 12 2017
 

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7 = m/n 
⇒ 7 = m²/n² 
⇒ m² = 7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

24 tháng 4 2017

Vì 7 là số nguyên tố.

=>\(\sqrt{7}\)

là số thập phân vô hạn ko tuần hoàn.

=>Số trên là số vô tỉ.

tk mk nha các bn.

-chúc ai tk mk học giỏi-

24 tháng 4 2017

Vì 7 là số nguyên tố

=> \(\sqrt{7}\)là số thập phân vô hạn không tuần hoàn

=> số trên là vô tỉ

Đúng 100%

Đúng 100%

Đúng 100%

17 tháng 5 2019

https://olm.vn/hoi-dap/detail/13339180375.html

Tham khảo 

17 tháng 5 2019

Ta có:

\(\sqrt{7}=2.645751311\)

=>  ĐPCM