Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P = \(n^4-14n^3+71n^2-154n+120\)
\(=n^4-3n^3-11n^3+33n^2+38n^2-114n-40n+120\)
\(=n^3\left(n-3\right)-11n^2\left(n-3\right)+38n\left(n-3\right)-40\left(n-3\right)\)
\(=\left(n-3\right)\left(n^3-11n^2+38n-40\right)\)
\(=\left(n-3\right)\left(n^3-4n^2-7n^2+28n+10n-40\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-7n+10\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-2n-5n+10\right)\)
\(=\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)\)
Ta có P bằng tích 4 số tự nhiên liên tiếp. Mà tích 4 số tự nhiên liên tiếp chia hết cho 24.
\(=>P⋮24\left(đpcm\right).\)
Cách khác:
B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp
=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau
=> B chia hết cho 2x3x4
Hay B chia hết cho 24.
=>(đpcm).
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Ta có : n2 + n + 1 = n2 + ( n + 1 ) = n . ( n+1 ) + 1
Giả sử n chia hết cho 9
=> n2 chia hết cho 9
=> ( n + 1 ) không chia hết cho 9
=> n2 + ( n + 1 ) không chia hết cho 9
=> điều giả sử là sai
Vậy với mọi sô tựn nhiên n thì n2 + n + 1 không chia hết cho 9