Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)
a) (n + 2)2 - (n - 2)2
= (n + 2 - n + 2)(n + 2 + n - 2)
\(=8n⋮8(\forall n\in Z)\)
b) (n + 7)2 - (n - 5)2
= (n + 7 - n + 5)(n + 7 + n - 5)
= 12.(2n + 2)
= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)
Theo định lý Phéc-ma suy ra điều phải chứng minh
Ta có :\(n^3-n=n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right)\)
Vì n,n-1, n+1 là 3 số nguyên liên tiếp
\(\Rightarrow n^3-n⋮6\)
\(\Rightarrow n^3-n⋮3\)
Học tốt :))
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
\(n^3+2012n=n\left(n^2+2012\right)\)
- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)
Mặt khác ta có:
\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)
\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)
Từ (1) và (2) suy ra điều phải chứng minh
n3 + 2012n = n3 - n + 2013n = n(n2 - 1) + 2013n = (n -1)n(n + 1) + 2013n
Nhận thấy (n - 1)n(n + 1) \(⋮\)3 (tích 3 số nguyên liên tiếp)
Lại có : 2013n \(⋮\)3 (vì 2013 \(⋮\)3)
=> (n -1)n(n + 1) + 2013n \(⋮\)3
=> n3 + 2012 \(⋮3\forall n\inℤ\)