Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)
Ta có: (a3+a2b+ab2+b3)(a-b)=a4-b4
=> a4+a3b+a2b2+ab3-a3b-a2b2-ab3-b4=a4-b4
=> (a3b-a3b)+(a2b2-a2b2)+(ab3-ab3)+(a4-b4)= a4-b4
=> a4-b4=a4-b4
=> ĐPCM
Xét vế trái
\(\left(a^3+a^2b+ab^2+b^3\right)\left(a-b\right)\)
\(=a^4+a^3b+a^2b^2+ab^3-a^3b-a^2b^2-ab^3-b^4\)
\(=a^4-b^4\)
= vế phải
=> Đpcm
a) \(N=8a^3-27b^3\)
\(=\left(2a\right)^3-\left(3b\right)^3\)
\(=\left(2a-3b\right)^3+18ab\left(2a-3b\right)\)
\(=5^3+18\cdot12\cdot5\)
\(=125+1080=1205\)
b) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)
\(=a^3+b^3+6a^2b^2+3a^3b+3ab^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+2ab+b^2\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a+b\right)^2\)
\(=\left(a+b\right)^3+3ab\left(a+b\right)\left(a+b-1\right)\)
\(=1^3+3ab\cdot1\cdot0\)
\(=1\)
a ) \(N=8a^3-27b^3\)
\(\Leftrightarrow N=\left(2a-3b\right)\left(4x^2+6ab+9b^2\right)\)
\(\Leftrightarrow N=5\left(4x^2+9b^2+72\right)\)
Ta có : \(2a-3b=5\)
\(\Leftrightarrow4a^2+9b^2=25+6ab\)
Thay vào ta được : \(N=5\left(25+6ab+72\right)=845\)
b ) \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)
\(\Leftrightarrow K=\left(a+b\right)^3-3ab\left(a+b\right)+6a^2b^2\left(a+b\right)+3ab\left(a+b\right)^2-6a^2b^2\)
\(\Leftrightarrow K=1-3ab+6a^2b^2+3ab-6a^2b^2=1\)
c ) \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)
\(\Leftrightarrow P=\left(\dfrac{x}{4}+\dfrac{y}{2}\right)^3-3\left[\left(\dfrac{x}{4}\right)^2\dfrac{y}{2}+\dfrac{x}{4}\left(\dfrac{y}{2}\right)^2\right]\)
\(\Leftrightarrow P=\left(\dfrac{2\left(x+2y\right)}{8}\right)^3-3\left[\dfrac{x^2y}{32}+\dfrac{xy^2}{16}\right]\)
\(\Leftrightarrow P=8-3xy\left(\dfrac{x+2y}{32}\right)\)
\(\Leftrightarrow P=8-3.4\left(\dfrac{8}{32}\right)=5\)