Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\right)\) : \(\dfrac{1}{\sqrt{x}+2}\)
=\(\dfrac{3x-3\sqrt{x}-3+\sqrt{x}+2-\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}\) .\(\sqrt{x}+2\)
=\(\dfrac{(3x-3\sqrt{x})(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
=\(\dfrac{3\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}\) =\(3\sqrt{x}\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
a) \(A=\left(\frac{1}{\sqrt{x}+3}-\frac{4}{9-x}\right).\frac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(A=\left[\frac{\sqrt{x}-3}{x-9}+\frac{4}{x-9}\right].\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}-3+4}{x-9}.\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(A=\frac{2}{\sqrt{x}+3}\)
vậy \(A=\frac{2}{\sqrt{x}+3}\)