K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(BDT\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)

\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)

20 tháng 10 2017

Note \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\)

Nên ta sẽ đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\ge2\). Khi đó

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2+2\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(t^2+2\ge3t\Leftrightarrow\left(t-2\right)\left(t-1\right)\ge0\)

BĐT cuối đúng vì \(t\ge 2\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2018

Lời giải:

Nếu $x,y$ trái dấu: Ta thấy vế trái luôn lớn hơn $0$, còn vế phải sẽ nhỏ hơn $0$ do \(x,y\) trái dấu thì \(\frac{x}{y}; \frac{y}{x}< 0\)

Do đó \(\text{VT}> \text{VP}(1)\)

Nếu $x,y$ cùng dấu:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)^2+2-3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(=t^2+2-3t=(t-1)(t-2)\) với \(t=\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT Cô-si cho 2 số dương:

\(t=\frac{x}{y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

\(\Rightarrow t-1>0; t-2\geq 0\Rightarrow (t-1)(t-2)\geq 0\)

Hay \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\geq 3(\frac{x}{y}+\frac{y}{x})\) (2)

Từ $(1);(2)$ ta có đpcm

Dấu bằng xảy ra khi \(x=y\neq 0\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

1. 

PT $\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$

$\Leftrightarrow (x+y)^2=(x+1)(x+2)$

Với $x\in\mathbb{Z}$ dễ thấy rằng $(x+1,x+2)=1$. Do đó để tích của chúng là scp thì $x+1,x+2$ cũng là những scp.

Đặt $x+1=a^2, x+2=b^2$ với $a,b\in\mathbb{N}$

$\Rightarrow b^2-a^2=1\Leftrightarrow (b-a)(b+a)=1$

Với $a,b\in\mathbb{N}$ dễ thấy $b-a=b+a=1$

$\Rightarrow b=1; a=0$

$\Rightarrow x=-1$

$(x+y)^2=(x+1)(x+2)=0\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

2.

Đặt $x-1=a$ thì bài toán trở thành:

Cho $a,y>0$. CMR:

$\frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}\geq 3(\frac{1-2a}{a}+\frac{a+1}{y})$

$\Leftrightarrow \frac{1}{a^3}+\frac{a^3}{y^3}+\frac{1}{y^3}+6\geq \frac{3}{a}+\frac{3a}{y}+\frac{3}{y}$
BĐT trên luôn đúng do theo BĐT AM-GM thì:

$\frac{1}{a^3}+1+1\geq \frac{3}{a}$
$\frac{1}{y^3}+1+1\geq \frac{3}{y}$

$\frac{a^3}{y^3}+1+1\geq \frac{3a}{y}$

Ta có đpcm

Dấu "=" xảy ra khi $a=y=1$

$\Leftrightarrow x=2; y=1$

26 tháng 7 2018

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2.\dfrac{x+y+z}{xyz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\text{|}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\text{|}\)

26 tháng 7 2018

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{z}{xyz}+\dfrac{y}{xyz}+\dfrac{x}{xyz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)

7 tháng 7 2018

khó quá

mà đây là bài lớp 8 mà bạn

11 tháng 7 2018

lớp 9 cũng có bạn ạ.

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

16 tháng 7 2018

a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)

b, đề không rõ ràng

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0