Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t= 2012
Thay vào ta được :\(\sqrt{t^2+t^2\left(t+1\right)^2+\left(t+1\right)^2}=\sqrt{t^2+t^4+2t^3+t^2+t^2+2t+1}\)
=\(\sqrt{t^4+t^2+1+2\left(t^3+t^2+t\right)}=\sqrt{\left(t^2+t+1\right)^2}=t^2+t+1\)
= \(2012^2+2012+1\)là số tự nhiên (đpcm)
minh bik lam ne
đặt a =2012
\(\Rightarrow A=\sqrt{a^2+a^2\left[a+1\right]^2+\left\{a+1\right\}^2}\)
\(=\sqrt{a^2+a^4+2a^3+a^2+2a+1}\)
\(=\sqrt{a^4+2a^3+3a^2+2a+1}\)
\(=\sqrt{\left[a^2+a+1\right]^2}\)
\(=a^2+a+1\)
\(=2012^2+2012+1\) là 1 số tự nhiên
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2012^2+\left(2012.2013\right)^2+2013^2}\)
\(=2012+2012.2013+2013\)
Vậy A là một số tự nhiên
P/s: Mình nghĩ thế, không chắc!
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{\left(2013-1\right)^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2.2013^2-2.2013+1+2012^2.2013^2}\)
\(=\sqrt{2.2013.\left(2013-1\right)+1+2012^2.2013^2}\)
\(=\sqrt{2012^2.2013^2+2.2013.2012+1}=\sqrt{\left(2012.2013+1\right)^2}=2012.2013+1\)
Đặt \(\sqrt{2012}=a;\sqrt{2013}=b\)
Theo đề, ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{a}-\left(a+b\right)\)
\(=\dfrac{a^3+b^3}{ab}-\dfrac{ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)-ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)^3-4ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)(đpcm)
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\Rightarrow A^2=2012^2+2012^2.2013^2+2013^2=2012^2.2013^2+\left(2013-1\right)^2+2013^2=\left(2012.2013\right)^2+2013^2-2.2013+1+2013=\left(2012.2013\right)^2+2.2013^2-2.2013+1=\left(2012.2013\right)^2+2.2013\left(2013-1\right)+1=\left(2012.2013\right)^2+2.2012.2013.1+1=\left(2012.2013+1\right)^2\Rightarrow A=2012.2013+1\)Vậy A là một số tự nhiên
A2=20122+2012220132+20132
A2=(2013-1)2+20132+2012220132
A2=2.20132-2.2013+1+2012220132
A2=2012220132+2.2013(2013-1)+1
A2=(2012.2013+1)2 \(\Rightarrow\)A=2012.2013+1 la so tu nhien