K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(A=7+7^2+7^3+...+7^{4k}\)

\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(=\left(7+7^2+7^3+7^4\right)\left(1+...+7^{4k-4}\right)\)

\(=2800\left(1+...+7^{4k-4}\right)\)

\(=350.8\left(1+...+7^{4k-4}\right)⋮8\)

\(\Rightarrow A⋮8\left(1\right)\)

Ta lại có : \(A=7+7^2+7^3+...+7^{4k}\)

\(\Rightarrow7A=7^2+7^3+7^4+...+7^{4k+1}\)

\(\Rightarrow7A-A=\left(7^2+7^3+7^4+...+7^{4k+1}\right)-\left(7+7^2+7^3+....+7^{4k}\right)\)

hay \(6A=7^{4k+1}-7=7\left(7^{4k}-1\right)\)

Vì \(7\equiv2\left(mod5\right)\)\(\Rightarrow7^{4k}\equiv2^{4k}=16^k\left(mod5\right)\)

mà \(16\equiv1\left(mod5\right)\)\(\Rightarrow16^k\equiv1^k=1\left(mod5\right)\)

\(\Rightarrow7^{4k}\equiv1\left(mod5\right)\)

\(\Rightarrow7^{4k}-1⋮5\left(\cdot\right)\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮5\)

\(\Rightarrow6A⋮5\)

Nhưng \(\left(6;5\right)=1\)

\(\Rightarrow A⋮5\left(2\right)\)

Ta lại có tiếp : \(7\equiv1\left(mod2\right)\)

\(\Rightarrow7^{4k}\equiv1^{4k}=1\left(mod2\right)\)

\(\Rightarrow7^{4k}-1⋮2\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)\(\left(\cdot\cdot\right)\) và \(\left(2;5\right)=1\)\(\Rightarrow7^{4k}-1⋮10\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮10\)

\(\Rightarrow6A⋮10\)

Nhưng \(\left(6;10\right)=1\)

\(\Rightarrow A⋮10\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(5;8;10\right)=1\)

\(\Rightarrow A⋮400\left(đpcm\right)\)

22 tháng 2 2018

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(A=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(A=\left(7+7^2+7^3+7^4\right)\left(1+7+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}=7.400.M\right)\)

vậy \(A⋮400\)

25 tháng 3 2016

Nhóm các hạng tử của tổng đã cho theo dạng sau:

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

     \(=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

     \(=\left(7+7^2+7^3+7^4\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

     \(=7\left(1+7+7^2+7^3\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}\right)=7.400.B\)

Vậy,   \(A\)  chia hết cho  \(400\)

30 tháng 7 2017

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

5 tháng 11 2016

nơi bài 2 là Cho p là số nguyên tố > 7 nha