K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Bạn tham khảo tại đây nhé:

Chứng minh 2222^5555+5555^2222 chia hết cho 7 - Nguyễn ...

Chúc bạn học tốt!

13 tháng 12 2019

ơ thế mình gợi ý bằng không à .-. mình tìm trên mạng rồi mà không có cách đó nên mới nhờ các bạn chứ :vv

11 tháng 10 2015

vào câu hỏi tương tu

 

24 tháng 4 2018

Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)

5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)

=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)

Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222

= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)

Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)

Nên (- 4)5555 + 42222 ≡ 0 (mod 7)

Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.

6 tháng 10 2024

sai bét

 

23 tháng 10 2016

cm:

2222+5555=7777

mu 2222+5555=7777

=>7777 chia hết cho 7

6 tháng 9 2019

Tìm x,y biết:

a) 3xy - 5y + 6x = 30

Giải:

3xy - 5y + 6x = 30

<=> y(3x - 5) + (6x - 10) = 20

<=> y(3x - 5) + 2(3x - 5) = 20

<=> (3x - 5)(y + 2) = 20

Ta có bảng sau:

3x - 51-12-24-45-510-1020-20
y + 220-2010-105-54-42-21-1
x24373131310305−53253-5
y0-228-123-72-60-4-1-3

Làm theo công thức sách giáo khoa

Bài này làm theo bảnh biển thiên sgk lớp 7:

b) y = - 3x2 + 2x – 1= 

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh  Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

còn lại bài bài CMR tham khảo:

https://diendan.hocmai.vn/threads/dong-du-thuc.185712/

26 tháng 12 2015

chtt

http://olm.vn/hoi-dap/question/24563.html

 

11 tháng 1 2020

b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)

2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)

Từ (1)  và  (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)

                     =>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)

Ta có:43 \(\equiv\)1 (mod 7)

=>(43)1111\(\equiv\)11111 (mod 7)

=>43333\(\equiv\)1 (mod 7)

=>-43333\(\equiv\)-1(mod 7)

=>1-43333\(\equiv\)0 (mod 7)

=> 55552222+22225555\(\equiv\)0 (mod 7)

Vậy 55552222+22225555\(⋮\)7