K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

AH
Akai Haruma
Giáo viên
5 tháng 7 2018

Lời giải:
Đặt biểu thức đã cho là $A$

Ta viết lại biểu thức thành:

\(A=(3^{n+1}-2^{n+1})(3^{n+1}+2^{n+1}).3^{2(n+1)}+(2^{n+1}.3^{n+1})^2\)

Đặt \(3^{n+1}=a; 2^{n+1}=b\Rightarrow A=(a-b)(a+b)a^{2}+(ba)^2\)

\(=(a^2-b^2)a^2+a^2b^2=a^4=(a^2)^2\)

Do đó biểu thức đã cho là một số chính phương.

Ta có đpcm.

13 tháng 6 2016

Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp

Đặt n = k thì có đẳng thức

Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )

13 tháng 6 2016

thi giai ra luon dj

9 tháng 7 2018

Số hạng thứ n của dãy là:n(n+1)/2

Số hạng thứ n-1 của dãy là:(n-1)n/2

Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2

                                  =(2n^2)/2=n^2

Vì n thuộc N nên n^2 là số chính phương

Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.

9 tháng 7 2018

Ta xét tổng hai số 

(n-1)×n/2  +  n×(n+1)/2

=> (n-1)×n+n×(n+1) /2

=>n×[(n-1)×(n+1)]  /2

=>n×2n /2

=> 2×n2  /2

=> n2

bài toán được chứng minh

2 tháng 10 2020

a^2 + b^2 + c^2= ab + bc + ca

2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)

2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca

a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0

a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0

(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0

(a – b)^2 + (b – c)^2 + (c – a)^2 = 0

Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b 

     (b-c)^2  lớn hơn hoặc bằng 0 với mọi c và b

     (c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c

=> (a-b)^2 =0  ; (b-c)^2=0 ; (c-a)^2=0

=> a=b ; b=c ; c=a

=>a=b=c

28 tháng 9 2019

Bài 1: a) \(0\)

Bài 2: \(x=1\)

Bài 3: \(24;25;26\)

28 tháng 9 2019

Quan trọng là cách lm nha bạn.

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạCÂU 1:giải phương trình\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\) ...
Đọc tiếp

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạ

CÂU 1:giải phương trình

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)

CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)

b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)   

CÂU 3:Một canô xuôi dòng 9 km và quay trở về đi ngược dòng đến một địa điểm cách chỗ xuất phát ban đầu 1 km thì dừng lại .Tính vận tốc của canô khi nước yên lặng biết vận tốc dòng nước là 2 km /h,, thời gian xuôi dòng ít hơn thời gian ngược dòng là 15 phút   

CÂU 4: Cho tam giác ABC có 3 góc nhọn. các điểm M,N lần lượt là trung điểm  của BC,AC.Gọi H,O,G theo thứ tự là trực tâm , giao điểm các đường trung trực, trọng tâm của tam giác ABC.Chứng minh:a)tam giác AHB đồng dạng với tam giác MON

b)tam giác HAG đồng dạng với tam giác OMG

c)3 điểm H ,G,O thẳng hàng 

CÂU 5:a) chứng minh rằng với mọi số nguyen dương n thì:

S\(=1^3+2^3+3^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)  

b) chứng minh rằng với mọi n thuộc N thì :A=n(n+1)(n+2)(n+3)+1 là một số chính phương

2
6 tháng 4 2017

Câu 1: 

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)

\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)

\(\Leftrightarrow x=-2013\)

Câu 2:

b)Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Đẳng thức xảy ra khi \(a=b=c\)

Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)

\(B=3a^2-6a+2017=3a^2-6a+3+2014\)

\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(a=1\)

Lại có \(a=b=c\Rightarrow a=b=c=1\)

Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)

Câu 5:

\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành:

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có: 

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với:

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lí quy nạp ta có Đpcm

Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(t=n^2+3n\) thì ta có: 

\(A=t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)

7 tháng 4 2017

thks bạn

4 tháng 10 2018

Ta có :

\(1-\frac{3}{n\left(n+2\right)}=\frac{n^2+2n-3}{n\left(n+2\right)}=\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(\Rightarrow A=\frac{1.5}{2.4}.\frac{2.6}{3.5}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n-1}{n}\right)\left(\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{n+3}{n+2}\right)\)

\(=\frac{1}{n}.\frac{n+3}{4}=\frac{n+3}{n}.\frac{1}{4}\ge\frac{1}{4}\left(dpcm\right)\)