K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8

S=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)

S=6+2^2(2+2^2)+2^4(2+2^2)+2^6(2+2^2)

S=6+2^2.6+2^4.6+2^6.6

S=6(1+2^2+2^4+2^6)=>S chia hết cho -6

S=2+22+23+24+25+26+27+28=(2+22)+22(2+22)+24(2+22)+26(2+22)

S=6+4x6+16x6+64x6

Vì 6 chia hết 6 nên 4x6 chia hết 6 ,16x6 chia hết 6, 64x6 chia hết 6

nên 6+4x6+16x6+64x6 chia hết 6

Vậy 2+22+23+24+25+26+27+28 chia hết cho 6

30 tháng 3 2020

*)S=2+22+23+24+.....+28

Vì các số hạng của S chia hết chia hết cho 2

*) S=2+22+23+24+.....+28

=> S=(2+22)+(23+24)+.....+(27+28)

=> S=2(1+2)+23(1+2)+....+27(1+2)

=> S=2.3+23.3+.....+27.3

=> S=3(2+23+....+27)

=> S chia hết cho 3

Ta có 2 và 3 là 2 số nguyên tố cùng nhau => S chia hết cho 2.3=6

=> S chia hết cho -6 (đpcm)

30 tháng 3 2020

\(S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)

 \(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)\)

\(=2.3+2^3.3+2^5.6+2^7.3\)

\(=6+2^2.6+2^4.6+2^6.6⋮6\)

Vậy \(S⋮6\)

\(#hoktot\)

30 tháng 12 2014

S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)

  =1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)

  =1.3+2^2.3+2^4.3+2^6.3+2^8.3

  =3.(1+2^2+2^4+2^6+2^8) chia hết cho 3

S=1+2+2^2+2^3+2^4+2^5+2^6+2^7

S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)

S=3 + 3.4 + 3.16 + 3.64

S=255

Vì 255 chia hết cho 3

=> S sẽ chia hết cho 3

Người lạ ơi bố thí cho tôi ^_^

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

24 tháng 10 2023

ko bt lm

 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn