Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{102}+2^{103}\right)=3.2^0+3.2^2+.....+2^{102}.3=3.\left(2^0+2^2+....+2^{102}\right)\)
Vậy S chia hết chp 3 (đpcm)
Câu a và câu b bài 2 xem Câu hỏi tương tự
Bài 2 câu c :
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 )
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0
=> Số tận cùng của A = 0.
Bài 1 để nghiên cứu
Gọi tổng đó là A. Ta có:
A=(61+62)+(63+64)+...+(62013+62014)+(60+2015)
=61(60+61)+63(60+61)+...+62013(60+61)+7x288
=61x7+63x7+...+62013x7+7x288
=7(61+63+...+62013+288) chia hết cho 7
Vậy A chia hết cho 7
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5( có tận cùng là 1)
125^2014 chia hết cho 5( vì 125 chia hết cho 5)
=> 121^2013+125^2014 ko chia hết cho 5
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5﴾ có tận cùng là 1﴿
125^2014 chia hết cho 5﴾ vì 125 chia hết cho 5﴿ => 121^2013+125^2014 ko chia hết cho 5
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21
S=(20+21+23)+........+(22013+22014+22015)
= (1+2+8)+......+ 22013(1+2+8