K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

sai đề bạn ạ VD 4 số tự nhiên liên tiếp là: 1;2;3;4

Mà 1.2.3.4=24 ( 24 ko chia hết cho 192)

=> sai đề

5 tháng 1 2016

a.(a+2).(a+4).(a+6)=
chắc đến đây bạn tự làm đc rồi đó

5 tháng 1 2016

khó vậy sao mình giải được

  

Gọi 2k và 2k+2 là 2 số chẵn liên liếp, ta có
2k.(2k+2)=4k^2+4k=4k(k+1)
Ta có k(k+1) luôn luôn chia hết cho 2
=> 4. k.(k+1) chia hết cho 2.4=8
Vậy 4k(k+1)chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8

hok tốt nha

5 tháng 10 2021

Gọi số chẵn thứ nhất là 2k ( k ∈ Z )

=> Số chẵn còn lại : 2k + 2

=> Ta có tích của hai số : 2k(2k + 2 )

= 2k.2k + 2k.2

= 4k2 + 4k

= 4k ( k + 1 ) 

k ∈ Z khi chia cho 2 luôn có hai số dư là 0 và 1 

=> k ∈ { 2n ; 2n + 1 } ( n ∈ Z ) 

Nếu k = 2n

=> 4k ( k + 1 ) = 4.2n ( 2n + 1 )

= 8n ( 2n + 1 ) ⋮ 8

Nếu k = 2n + 1

=> 4k ( k + 1 ) = 4( 2n + 1 ) [ ( 2n + 1 ) + 1 ]

= 4 ( 2n + 1 ) ( 2n + 2 )

= 8 ( 2n + 1 ) ( n + 1 ) ⋮ 8 

\(\Rightarrow4k\left(k+1\right)⋮8\forall k\in Z\)

Vậy tích của hai số chẵn liên tiếp chia hết cho 8 ( đpcm ).

25 tháng 8 2016

tui lam cau b nhe

gọi chẵn 1 là a,chẵn 2 là b

vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4

=>a+b ko chia hết cho 4

7 tháng 11 2024

흘르럏스헣 허줖

12 tháng 7 2021

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

ASDWE RHTYJNHWSAVFGB

16 tháng 11 2017

https://olm.vn/hoi-dap/question/263717.html

16 tháng 11 2017

Một số chẵn có dạng: 2k

=> tích 2 số chắn liên tiếp là:2kx(2k+2)

=4xkxk+4xk

=4xk(k+1)chia hết cho 4

Mà kx(k+1) là tích 2 số tự nhiên liên tiếp

=>kx(k+1) chia hết cho 2

=>4xkx(k+1) chia hết cho 2x4

=>4xkx(k+1) chia hết cho 8

Vậy tích 2 số chẵn liên tiếp luôn chia hết cho 8

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)