Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1.2+1/12+...+1/99.100
A=7/12+...1/99.100
Suy ra A>7/12 (1)
A=1-1/2+1/3-1/4+...+1/99-1/100
A=(1/2+1/3)-(1/4-...+1/100)
A=5/6-(1/4-...+1/100)
suy ra A<5/6 (2)
Vậy 7/12<A<5/6
chắc chắn đúng
Lê Tùng lâm bài của bạn chưa đúng vì
A = \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
Chứ không phải là: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Dưới tử mik tính ra thôi. VD: 12 . 22 = 1.4; 22.32 = 4.9 các tử sau tương tự
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{100-81}{81.100}\)
= \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}\)+.....+\(\frac{100}{81.100}-\frac{81}{81.100}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
.........................................................
Hình như sửa đề lại nhé
Câu hỏi của Tuấn Anh - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
Ta có
\(A=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(A=\frac{2}{1.2}-\frac{1}{1.2}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{6}{5.6}-\frac{5}{5.6}+...+\frac{100}{99.100}-\frac{99}{100.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
<=>A=1-1/100=99/100
=>7/12<A<5/6(bấm máy tính là biết)
mình vừa mới trả lời xong đấy
Câu hỏi của Do Not Ask Why - Toán lớp 7 - Học toán với OnlineMath
Dễ mà bạn.