Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)( đpcm )
\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2013}{2014}x\frac{2014}{2015}\)
=\(\frac{1x2x3x...x2013x2014}{2x3x4x...x2014x2015}\)
=\(\frac{1}{2015}\)
( Dau x la dau nhan)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2002\cdot2003}{2\cdot3\cdot4\cdot5\cdot....\cdot2003\cdot2004}\)
\(=\frac{1}{2004}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}=\frac{1\cdot2\cdot3\cdot4....2003}{2\cdot3\cdot4\cdot5....2004}=\frac{1}{2004}\)